62 research outputs found

    From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification

    Get PDF
    The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost

    Tag anti-collision algorithms in RFID systems - a new trend

    Get PDF
    RFID is a wireless communication technology that provides automatic identification or tracking and data collection from any tagged object. Due to the shared communication channel between the reader and the tags during the identification process in RFID systems, many tags may communicate with the reader at the same time, which causes collisions. The problem of tag collision has to be addressed to have fast multiple tag identification process. There are two main approaches to the tag collision problem: ALOHA based algorithms and tree based algorithms. Although these methods reduce the collision and solve the problem to some extent, they are not fast and efficient enough in real applications. A new trend emerged recently which takes the advantages of both ALOHA and tree based approaches. This paper describes the process and performance of the tag anti-collision algorithms of the tree-ALOHA trend

    Energy aware improved least and most significant bit arbitration algorithm for WORM tags

    Get PDF
    AbstractPassive Radio Frequency Identification systems have gained enormous attention and popularity especially after its adoption in time and data critical systems. Theoretically, these systems have the potential to read over 100 tags per second in applications which are well insulated from RF noise. Nevertheless, this may not be the case in practical systems, as tag collision is one of the major deterrents affecting the recognition rate. This paper exhaustively analyses the existing probabilistic, deterministic and hybrid algorithms on collision resolutions. In probabilistic algorithms, tags send their entire ID to the RFID reader in respective slots while tags in deterministic algorithms respond bit by bit based on the RFID reader’s query. To minimize identification delay, tag communication overhead and high energy consumption, a new energy efficient collision resolution strategy named Improved Least and Most Significant Bit Algorithm (LaMSBA) is introduced to effectively singulate a tag and increase the identification efficiency in changing tag population even when the bits in tag ID’s are randomly or uniformly distributed. Extensive simulation studies show that LaMSBA can be chosen as better alternatives for dense time and data critical RFID enabled systems. In addition, M/G/1 Queuing model is suitably identified and the the analytical results concluded that LaMSBA is able to maintain the steady state condition even when Class 1 tags arrive at the rate of 15 tags/second in the reader’s interrogation zone

    Anti-Collision Algorithms for Multi-Tag RFID

    Get PDF

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    Towards Extended Bit Tracking for Scalable and Robust RFID Tag Identification Systems

    Get PDF
    The surge in demand for Internet of Things (IoT) systems and applications has motivated a paradigm shift in the development of viable radio frequency identification technology (RFID)-based solutions for ubiquitous real-Time monitoring and tracking. Bit tracking-based anti-collision algorithms have attracted considerable attention, recently, due to its positive impact on decreasing the identification time. We aim to extend bit tracking to work effectively over erroneous channels and scalable multi RFID readers systems. Towards this objective, we extend the bit tracking technique along two dimensions. First, we introduce and evaluate a type of bit errors that appears only in bit tracking-based anti-collision algorithms called false collided bit error in single reader RFID systems. A false collided bit error occurs when a reader perceives a bit sent by tag as an erroneous bit due to channel imperfection and not because of a physical collision. This phenomenon results in a significant increase in the identification delay. We introduce a novel, zero overhead algorithm called false collided bit error selective recovery tackling the error. There is a repetition gain in bit tracking-based anti-collision algorithms due to their nature, which can be utilized to detect and correct false collided bit errors without adding extra coding bits. Second, we extend bit tracking to 'error-free' scalable mutli-reader systems, while leaving the study of multi-readers tag identification over imperfect channels for future work. We propose the multi-reader RFID tag identification using bit tracking (MRTI-BT) algorithm which allows concurrent tag identification, by neighboring RFID readers, as opposed to time-consuming scheduling. MRTI-BT identifies tags exclusive to different RFIDs, concurrently. The concept of bit tracking and the proposed parallel identification property are leveraged to reduce the identification time compared to the state-of-The-Art. 2013 IEEE.This work was supported by the Qatar National Research Fund (a member of Qatar Foundation) through NPRP under Grant 7-684-1-127. The work of A. Fahim and T. ElBatt was supported by the Vodafone Egypt Foundation.Scopu

    A Improved EPC Class 1 Gen 2 Protocol with FCFS Feature in the Mobile RFID Systems

    Get PDF
    In all anti-collision protocols of RFID standards, EPCGlobal Class 1 Generation 2 (C1G2) protocol has been most widely used in RFID systems since it is simply, efficient and safety. Similar to most existing anti-collision protocols, The C1G2 protocol initially aims at tag identification of static scenarios, where all tags keep still during the tag identification process. However, in many real scenarios, tags generally move along a fixed path in the reader coverage area, which implies that tags stay the coverage area only for a limited time (sojourn time). The scenarios are usually called mobile RFID systems. Because the multiple tag identification based on a shared wireless channel is random, tags entering the reader coverage area earlier may be identified later (random later identification phenomenon). The phenomenon and the limited sojourn time may let some tags lost. In this paper, we propose an improved C1G2 protocol with first come first served feature in mobile RFID systems. The protocol can overcome the RLI phenomenon effectively and retains good initial qualities of C1G2 protocol by modifying it slightly. Simulation results show that the proposed protocol can significantly reduce the numbers of lost tags in mobile RFID systems. The idea of the paper is beneficial for redesigning other existing tag anti-collision protocols so as to make these protocols adapt to mobile RFID systems
    • …
    corecore