9 research outputs found

    Identifying online user reputation in terms of user preference

    Get PDF
    Identifying online user reputation is significant for online social systems. In this paper, taking into account the preference physics of online user collective behaviors, we present an improved group-based rating method for ranking online user reputation based on the user preference (PGR). All the ratings given by each specific user are mapped to the same rating criteria. By grouping users according to their mapped ratings, the online user reputation is calculated based on the corresponding group sizes. Results for MovieLens and Netflix data sets show that the AUC values of the PGR method can reach 0.9842 (0.9493) and 0.9995 (0.9987) for malicious (random) spammers, respectively, outperforming the results generated by the traditional group- based method, which indicates that the online preference plays an important role for measuring user reputation

    Identifying online user reputation of user–object bipartite networks

    Get PDF
    Identifying online user reputation based on the rating information of the user–object bipartite networks is important for understanding online user collective behaviors. Based on the Bayesian analysis, we present a parameter-free algorithm for ranking online user reputation, where the user reputation is calculated based on the probability that their ratings are consistent with the main part of all user opinions. The experimental results show that the AUC values of the presented algorithm could reach 0.8929 and 0.8483 for the MovieLens and Netflix data sets, respectively, which is better than the results generated by the CR and IARR methods. Furthermore, the experimental results for different user groups indicate that the presented algorithm outperforms the iterative ranking methods in both ranking accuracy and computation complexity. Moreover, the results for the synthetic networks show that the computation complexity of the presented algorithm is a linear function of the network size, which suggests that the presented algorithm is very effective and efficient for the large scale dynamic online systems

    Group-based ranking method for online rating systems with spamming attacks

    No full text
    The ranking problem has attracted much attention in real systems. How to design a robust ranking method is especially significant for online rating systems under the threat of spamming attacks. By building reputation systems for users, many well-performed ranking methods have been applied to address this issue. In this letter, we propose a group-based ranking method that evaluates users' reputations based on their grouping behaviors. More specifically, users are assigned with high reputation scores if they always fall into large rating groups. Results on three real data sets indicate that the present method is more accurate and robust than the correlation-based method in the presence of spamming attacks

    Group-based ranking method for online rating systems with spamming attacks

    No full text
    Ranking problem has attracted much attention in real systems. How to design a robust ranking method is especially significant for online rating systems under the threat of spamming attacks. By building reputation systems for users, many well-performed ranking methods have been applied to address this issue. In this Letter, we propose a group-based ranking method that evaluates users' reputations based on their grouping behaviors. More specifically, users are assigned with high reputation scores if they always fall into large rating groups. Results on three real data sets indicate that the present method is more accurate and robust than correlation-based method in the presence of spamming attacks.Comment: 6 pages, 5 figures, 2 table

    Computational socioeconomics

    Get PDF
    Uncovering the structure of socioeconomic systems and timely estimation of socioeconomic status are significant for economic development. The understanding of socioeconomic processes provides foundations to quantify global economic development, to map regional industrial structure, and to infer individual socioeconomic status. In this review, we will make a brief manifesto about a new interdisciplinary research field named Computational Socioeconomics, followed by detailed introduction about data resources, computational tools, data-driven methods, theoretical models and novel applications at multiple resolutions, including the quantification of global economic inequality and complexity, the map of regional industrial structure and urban perception, the estimation of individual socioeconomic status and demographic, and the real-time monitoring of emergent events. This review, together with pioneering works we have highlighted, will draw increasing interdisciplinary attentions and induce a methodological shift in future socioeconomic studies
    corecore