3,787 research outputs found

    Know Thy Toucher

    Get PDF
    Most of current academic and commercial surface computing systems are capable of multitouch detection and hence allow simultaneous input from multiple users. Although there are so far only few applications in this area which rely on identifying the user, we believe that the association of touches to users will become an essential feature of surface computing as applications mature, new application areas emerge, and the enabling technology is readily available. As the capacitive technology used in present user identification enabled tabletops is limited with respect to the supported number of users and screen size, we outline a user identification enabled tabletop concept based on computer vision and biometric hand shape information, and introduce the prototype system we built to further investigate this concept. In a preliminary consideration, we derive concepts for identifying users by examining what new possibilities are enabled and by introducing different scopes of identification

    Random Beamforming with Heterogeneous Users and Selective Feedback: Individual Sum Rate and Individual Scaling Laws

    Full text link
    This paper investigates three open problems in random beamforming based communication systems: the scheduling policy with heterogeneous users, the closed form sum rate, and the randomness of multiuser diversity with selective feedback. By employing the cumulative distribution function based scheduling policy, we guarantee fairness among users as well as obtain multiuser diversity gain in the heterogeneous scenario. Under this scheduling framework, the individual sum rate, namely the average rate for a given user multiplied by the number of users, is of interest and analyzed under different feedback schemes. Firstly, under the full feedback scheme, we derive the closed form individual sum rate by employing a decomposition of the probability density function of the selected user's signal-to-interference-plus-noise ratio. This technique is employed to further obtain a closed form rate approximation with selective feedback in the spatial dimension. The analysis is also extended to random beamforming in a wideband OFDMA system with additional selective feedback in the spectral dimension wherein only the best beams for the best-L resource blocks are fed back. We utilize extreme value theory to examine the randomness of multiuser diversity incurred by selective feedback. Finally, by leveraging the tail equivalence method, the multiplicative effect of selective feedback and random observations is observed to establish the individual rate scaling.Comment: Submitted in March 2012. To appear in IEEE Transactions on Wireless Communications. Part of this paper builds upon the following letter: Y. Huang and B. D. Rao, "Closed form sum rate of random beamforming", IEEE Commun. Lett., vol. 16, no. 5, pp. 630-633, May 201

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Overview of Constrained PARAFAC Models

    Get PDF
    In this paper, we present an overview of constrained PARAFAC models where the constraints model linear dependencies among columns of the factor matrices of the tensor decomposition, or alternatively, the pattern of interactions between different modes of the tensor which are captured by the equivalent core tensor. Some tensor prerequisites with a particular emphasis on mode combination using Kronecker products of canonical vectors that makes easier matricization operations, are first introduced. This Kronecker product based approach is also formulated in terms of the index notation, which provides an original and concise formalism for both matricizing tensors and writing tensor models. Then, after a brief reminder of PARAFAC and Tucker models, two families of constrained tensor models, the co-called PARALIND/CONFAC and PARATUCK models, are described in a unified framework, for NthN^{th} order tensors. New tensor models, called nested Tucker models and block PARALIND/CONFAC models, are also introduced. A link between PARATUCK models and constrained PARAFAC models is then established. Finally, new uniqueness properties of PARATUCK models are deduced from sufficient conditions for essential uniqueness of their associated constrained PARAFAC models
    • 

    corecore