36 research outputs found

    Fronthaul Load Balancing in Energy Harvesting Powered Cloud Radio Access Networks

    Full text link
    © 2013 IEEE. Enhanced with wireless power transfer capability, cloud radio access network (C-RAN) enables energy-restrained mobile devices to function uninterruptedly. Beamforming of C-RAN has potential to improve the efficiency of wireless power transfer, in addition to transmission data rates. In this paper, we design the beamforming jointly for data transmission and energy transfer, under finite fronthaul capacity of C-RAN. A non-convex problem is formulated to balance the fronthaul requirements of different remote radio heads (RRHs). Norm approximations and relaxations are carried out to convexify the problem to second-order cone programming (SOCP). To improve the scalability of the design to large networks, we further decentralize the SOCP problem using the alternating direction multiplier method (ADMM). A series of reformulations and transformations are conducted, such that the resultant problem conforms to the state-of-The-Art ADMM solver and can be efficiently solved in real time. Simulation results show that the distributed algorithm can remarkably reduce the time complexity without compromising the fronthaul load balancing of its centralized counterpart. The proposed algorithms can also reduce the fronthaul bandwidth requirements by 25% to 50%, compared with the prior art

    Content delivery over multi-antenna wireless networks

    Get PDF
    The past few decades have witnessed unprecedented advances in information technology, which have significantly shaped the way we acquire and process information in our daily lives. Wireless communications has become the main means of access to data through mobile devices, resulting in a continuous exponential growth in wireless data traffic, mainly driven by the demand for high quality content. Various technologies have been proposed by researchers to tackle this growth in 5G and beyond, including the use of increasing number of antenna elements, integrated point-to-multipoint delivery and caching, which constitute the core of this thesis. In particular, we study non-orthogonal content delivery in multiuser multiple-input-single-output (MISO) systems. First, a joint beamforming strategy for simultaneous delivery of broadcast and unicast services is investigated, based on layered division multiplexing (LDM) as a means of superposition coding. The system performance in terms of minimum required power under prescribed quality-of-service (QoS) requirements is examined in comparison with time division multiplexing (TDM). It is demonstrated through simulations that the non-orthogonal delivery strategy based on LDM significantly outperforms the orthogonal strategy based on TDM in terms of system throughput and reliability. To facilitate efficient implementation of the LDM-based beamforming design, we further propose a dual decomposition-based distributed approach. Next, we study an efficient multicast beamforming design in cache-aided multiuser MISO systems, exploiting proactive content placement and coded delivery. It is observed that the complexity of this problem grows exponentially with the number of subfiles delivered to each user in each time slot, which itself grows exponentially with the number of users in the system. Therefore, we propose a low-complexity alternative through time-sharing that limits the number of subfiles that can be received by a user in each time slot. Moreover, a joint design of content delivery and multicast beamforming is proposed to further enhance the system performance, under the constraint on maximum number of subfiles each user can decode in each time slot. Finally, conclusions are drawn in Chapter 5, followed by an outlook for future works.Open Acces
    corecore