3,476 research outputs found

    Group Key Rekeying Technique with Secure Data Encryption in MANETs

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of autonomous nodes or mobile devices that can arrange themselves in various ways and operate without strict network administration. Ensuring security in mobile ad hoc network is a challenging issue and most of the applications in mobile ad hoc networks involve group-oriented communication. In Mobile ad-hoc network, each node treated as a terminal and also acts as an intermediate router. In this scenario, multi-hop occurs for communication in mobile ad hoc network. There may be a possibility of threats and malicious nodes in between source and destination. Providing the security in MANET is entirely different from the traditional wired network. In the present scenario, various applications of the mobile ad hoc network have been proposed and issues are solved by using the cryptographic techniques. Mostly cryptographic techniques are used to provide the security to MANETs. Cryptographic techniques will not be efficient security mechanism if the key management is weak. The purpose of key management is to provide secure procedures for handling keys in the cryptographic technique. The responsibilities of key management include key generation, key distribution, and key maintenance. Several key management schemes have been introduced for MANETs. The Group key management scheme is an efficient method for key management in MANET. In group key management scheme, rekeying is used whenever a new node joins or existing node leaves from the group. In this paper, we propose a periodic rekeying method (PRK) and analyze the performance of LKH rekeying techniques in a group key management schemes. The symmetric encryption techniques are analyzed with different parameters, such as Throughput and Energy consumption. Security and performance of rekeying protocols are analyzed through detailed study and simulation

    Data Confidentiality in Mobile Ad hoc Networks

    Full text link
    Mobile ad hoc networks (MANETs) are self-configuring infrastructure-less networks comprised of mobile nodes that communicate over wireless links without any central control on a peer-to-peer basis. These individual nodes act as routers to forward both their own data and also their neighbours' data by sending and receiving packets to and from other nodes in the network. The relatively easy configuration and the quick deployment make ad hoc networks suitable the emergency situations (such as human or natural disasters) and for military units in enemy territory. Securing data dissemination between these nodes in such networks, however, is a very challenging task. Exposing such information to anyone else other than the intended nodes could cause a privacy and confidentiality breach, particularly in military scenarios. In this paper we present a novel framework to enhance the privacy and data confidentiality in mobile ad hoc networks by attaching the originator policies to the messages as they are sent between nodes. We evaluate our framework using the Network Simulator (NS-2) to check whether the privacy and confidentiality of the originator are met. For this we implemented the Policy Enforcement Points (PEPs), as NS-2 agents that manage and enforce the policies attached to packets at every node in the MANET.Comment: 12 page

    Fault-Tolerant Extension of Hypercube Algorithm for Efficient, Robust Group Communications in MANETs

    Get PDF
    Securing multicast communications in Mobile Ad Hoc Networks (MANETs) has become one of the most challenging research directions in the areas of wireless networking and security. MANETs are emerging as the desired environment for an increasing number of commercial and military applications, addressing also an increasing number of users. Security on the other hand, is becoming an indispensable requirement of our modern life for all these applications. However, the limitations of the dynamic, infrastructure-less nature of MANETs impose major difficulties in establishing a secure framework suitable for group communications. The design of efficient key management (KM) schemes for MANET is of paramount importance, since the performance of the KM functions (key generation, entity authentication, key distribution/agreement) imposes an upper limit on the efficiency and scalability of the whole secure group communication system. In this work, we contribute towards efficient, robust and scalable, secure group communications for MANETs, by extending an existing key agreement (KA) scheme (where all parties contribute equally to group key generation) ypercube - to tolerate multiple member failures with low cost, through its integration with a novel adaptively proactive algorithm. We assume that the participating users have already been authenticated via some underlying mechanism and we focus on the design and analysis of a fault-tolerant Hypercube, with the aim to contribute to the robustness and efficiency of Octopus-based schemes (an efficient group of KA protocols for MANETs using Hypercube as backbone). We compare our algorithm with the existing approach, and we evaluate the results of our analysis. Through our analysis and simulation results we demonstrate how the new Hypercube algorithm enhances the robustness of the Octopus schemes maintaining their feasibility in MANETs at the same time. Key terms: Key Management, Key Agreement, Hypercube Protocol, Fault-Tolerance, Octopus Schemes, Elliptic Curves Cryptograph

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Flexible Authentication in Vehicular Ad hoc Networks

    Full text link
    A Vehicular Ad-Hoc Network (VANET) is a form of Mobile ad-hoc network, to provide communications among nearby vehicles and between vehicles and nearby fixed roadside equipment. The key operation in VANETs is the broadcast of messages. Consequently, the vehicles need to make sure that the information has been sent by an authentic node in the network. VANETs present unique challenges such as high node mobility, real-time constraints, scalability, gradual deployment and privacy. No existent technique addresses all these requirements. In particular, both inter-vehicle and vehicle-to-roadside wireless communications present different characteristics that should be taken into account when defining node authentication services. That is exactly what is done in this paper, where the features of inter-vehicle and vehicle-to-roadside communications are analyzed to propose differentiated services for node authentication, according to privacy and efficiency needs
    • …
    corecore