6 research outputs found

    Group Key Agreement for Ad Hoc Networks

    Get PDF
    Over the last 30 years the study of group key agreement has stimulated much work. And as a result of the increased popularity of ad hoc networks, some approaches for the group key establishment in such networks are proposed. However, they are either only for static group or the memory, computation and communication costs are unacceptable for ad-hoc networks. In this thesis some protocol suites from the literature (2^d-cube, 2^d-octopus, Asokan-Ginzboorg, CLIQUES, STR and TGDH) shall be discussed. We have optimized STR and TGDH by reducing the memory, communication and computation costs. The optimized version are denoted by µSTR and µTGDH respectively. Based on the protocol suites µSTR and µTGDH we present a Tree-based group key agreement Framework for Ad-hoc Networks (TFAN). TFAN is especially suitable for ad-hoc networks with limited bandwidth and devices with limited memory and computation capability. To simulate the protocols, we have implemented TFAN, µSTR and µTGDH with J2ME CDC. The TFAN API will be described in this thesis

    Coded Cooperative Data Exchange for a Secret Key

    Full text link
    We consider a coded cooperative data exchange problem with the goal of generating a secret key. Specifically, we investigate the number of public transmissions required for a set of clients to agree on a secret key with probability one, subject to the constraint that it remains private from an eavesdropper. Although the problems are closely related, we prove that secret key generation with fewest number of linear transmissions is NP-hard, while it is known that the analogous problem in traditional cooperative data exchange can be solved in polynomial time. In doing this, we completely characterize the best possible performance of linear coding schemes, and also prove that linear codes can be strictly suboptimal. Finally, we extend the single-key results to characterize the minimum number of public transmissions required to generate a desired integer number of statistically independent secret keys.Comment: Full version of a paper that appeared at ISIT 2014. 19 pages, 2 figure

    Authentication and key establishment in wireless networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore