109 research outputs found

    Multiwinner Voting with Fairness Constraints

    Full text link
    Multiwinner voting rules are used to select a small representative subset of candidates or items from a larger set given the preferences of voters. However, if candidates have sensitive attributes such as gender or ethnicity (when selecting a committee), or specified types such as political leaning (when selecting a subset of news items), an algorithm that chooses a subset by optimizing a multiwinner voting rule may be unbalanced in its selection -- it may under or over represent a particular gender or political orientation in the examples above. We introduce an algorithmic framework for multiwinner voting problems when there is an additional requirement that the selected subset should be "fair" with respect to a given set of attributes. Our framework provides the flexibility to (1) specify fairness with respect to multiple, non-disjoint attributes (e.g., ethnicity and gender) and (2) specify a score function. We study the computational complexity of this constrained multiwinner voting problem for monotone and submodular score functions and present several approximation algorithms and matching hardness of approximation results for various attribute group structure and types of score functions. We also present simulations that suggest that adding fairness constraints may not affect the scores significantly when compared to the unconstrained case.Comment: The conference version of this paper appears in IJCAI-ECAI 201

    Fair Knapsack

    Full text link
    We study the following multiagent variant of the knapsack problem. We are given a set of items, a set of voters, and a value of the budget; each item is endowed with a cost and each voter assigns to each item a certain value. The goal is to select a subset of items with the total cost not exceeding the budget, in a way that is consistent with the voters' preferences. Since the preferences of the voters over the items can vary significantly, we need a way of aggregating these preferences, in order to select the socially best valid knapsack. We study three approaches to aggregating voters' preferences, which are motivated by the literature on multiwinner elections and fair allocation. This way we introduce the concepts of individually best, diverse, and fair knapsack. We study the computational complexity (including parameterized complexity, and complexity under restricted domains) of the aforementioned multiagent variants of knapsack.Comment: Extended abstract will appear in Proc. of 33rd AAAI 201

    Approval-Based Shortlisting

    Full text link
    Shortlisting is the task of reducing a long list of alternatives to a (smaller) set of best or most suitable alternatives from which a final winner will be chosen. Shortlisting is often used in the nomination process of awards or in recommender systems to display featured objects. In this paper, we analyze shortlisting methods that are based on approval data, a common type of preferences. Furthermore, we assume that the size of the shortlist, i.e., the number of best or most suitable alternatives, is not fixed but determined by the shortlisting method. We axiomatically analyze established and new shortlisting methods and complement this analysis with an experimental evaluation based on biased voters and noisy quality estimates. Our results lead to recommendations which shortlisting methods to use, depending on the desired properties

    Proportional Fairness in Clustering: A Social Choice Perspective

    Full text link
    We study the proportional clustering problem of Chen et al. [ICML'19] and relate it to the area of multiwinner voting in computational social choice. We show that any clustering satisfying a weak proportionality notion of Brill and Peters [EC'23] simultaneously obtains the best known approximations to the proportional fairness notion of Chen et al. [ICML'19], but also to individual fairness [Jung et al., FORC'20] and the "core" [Li et al. ICML'21]. In fact, we show that any approximation to proportional fairness is also an approximation to individual fairness and vice versa. Finally, we also study stronger notions of proportional representation, in which deviations do not only happen to single, but multiple candidate centers, and show that stronger proportionality notions of Brill and Peters [EC'23] imply approximations to these stronger guarantees

    On the Complexity of Finding a Diverse and Representative Committee using a Monotone, Separable Positional Multiwinner Voting Rule

    Full text link
    Fairness in multiwinner elections, a growing line of research in computational social choice, primarily concerns the use of constraints to ensure fairness. Recent work proposed a model to find a diverse \emph{and} representative committee and studied the model's computational aspects. However, the work gave complexity results under major assumptions on how the candidates and the voters are grouped. Here, we close this gap and classify the complexity of finding a diverse and representative committee using a monotone, separable positional multiwinner voting rule, conditioned \emph{only} on the assumption that P ≠\neq NP.Comment: 8 pages (2-column format). This paper builds upon arXiv:2107.07356 such that the hardness results of the former hold without the need for the assumptions used in Corollary 2 of the latter

    Multiwinner Analogues of Plurality Rule: Axiomatic and Algorithmic Perspectives

    Full text link
    We characterize the class of committee scoring rules that satisfy the fixed-majority criterion. In some sense, the committee scoring rules in this class are multiwinner analogues of the single-winner Plurality rule, which is uniquely characterized as the only single-winner scoring rule that satisfies the simple majority criterion. We define top-kk-counting committee scoring rules and show that the fixed majority consistent rules are a subclass of the top-kk-counting rules. We give necessary and sufficient conditions for a top-kk-counting rule to satisfy the fixed-majority criterion. We find that, for most of the rules in our new class, the complexity of winner determination is high (that is, the problem of computing the winners is NP-hard), but we also show examples of rules with polynomial-time winner determination procedures. For some of the computationally hard rules, we provide either exact FPT algorithms or approximate polynomial-time algorithms

    Algorithmic aspects of resource allocation and multiwinner voting: theory and experiments

    Get PDF
    This thesis is concerned with investigating elements of computational social choice in the light of real-world applications. We contribute to a better understanding of the areas of fair allocation and multiwinner voting. For both areas, inspired by real-world scenarios, we propose several new notions and extensions of existing models. Then, we analyze the complexity of answering the computational questions raised by the introduced concepts. To this end, we look through the lens of parameterized complexity. We identify different parameters which describe natural features specific to the computational problems we investigate. Exploiting the parameters, we successfully develop efficient algorithms for spe- cific cases of the studied problems. We complement our analysis by showing which parameters presumably cannot be utilized for seeking efficient algorithms. Thereby, we provide comprehensive pictures of the computational complexity of the studied problems. Specifically, we concentrate on four topics that we present below, grouped by our two areas of interest. For all but one topic, we present experimental studies based on implementations of newly developed algorithms. We first focus on fair allocation of indivisible resources. In this setting, we consider a collection of indivisible resources and a group of agents. Each agent reports its utility evaluation of every resource and the task is to “fairly” allocate the resources such that each resource is allocated to at most one agent. We concentrate on the two following issues regarding this scenario. The social context in fair allocation of indivisible resources. In many fair allocation settings, it is unlikely that every agent knows all other agents. For example, consider a scenario where the agents represent employees of a large corporation. It is highly unlikely that every employee knows every other employee. Motivated by such settings, we come up with a new model of graph envy-freeness by adapting the classical envy-freeness notion to account for social relations of agents modeled as social networks. We show that if the given social network of agents is simple (for example, if it is a directed acyclic graph), then indeed we can sometimes find fair allocations efficiently. However, we contrast tractability results with showing NP-hardness for several cases, including those in which the given social network has a constant degree. Fair allocations among few agents with bounded rationality. Bounded rationality is the idea that humans, due to cognitive limitations, tend to simplify problems that they face. One of its emanations is that human agents usually tend to report simple utilities over the resources that they want to allocate; for example, agents may categorize the available resources only into two groups of desirable and undesirable ones. Applying techniques for solving integer linear programs, we show that exploiting bounded rationality leads to efficient algorithms for finding envy-free and Pareto-efficient allocations, assuming a small number of agents. Further, we demonstrate that our result actually forms a framework that can be applied to a number of different fairness concepts like envy-freeness up to one good or envy-freeness up to any good. This way, we obtain efficient algorithms for a number of fair allocation problems (assuming few agents with bounded rationality). We also empirically show that our technique is applicable in practice. Further, we study multiwinner voting, where we are given a collection of voters and their preferences over a set of candidates. The outcome of a multiwinner voting rule is a group (or a set of groups in case of ties) of candidates that reflect the voters’ preferences best according to some objective. In this context, we investigate the following themes. The robustness of election outcomes. We study how robust outcomes of multiwinner elections are against possible mistakes made by voters. Assuming that each voter casts a ballot in a form of a ranking of candidates, we represent a mistake by a swap of adjacent candidates in a ballot. We find that for rules such as SNTV, k-Approval, and k-Borda, it is computationally easy to find the minimum number of swaps resulting in a change of an outcome. This task is, however, NP-hard for STV and the Chamberlin-Courant rule. We conclude our study of robustness with experimentally studying the average number of random swaps leading to a change of an outcome for several rules. Strategic voting in multiwinner elections. We ask whether a given group of cooperating voters can manipulate an election outcome in a favorable way. We focus on the k-Approval voting rule and we show that the computational complexity of answering the posed question has a rich structure. We spot several cases for which our problem is polynomial-time solvable. However, we also identify NP-hard cases. For several of them, we show how to circumvent the hardness by fixed-parameter tractability. We also present experimental studies indicating that our algorithms are applicable in practice
    • …
    corecore