339 research outputs found

    Study of multifrequency sensitivity to soil moisture variations in the lower Bermejo basin

    Get PDF
    In this paper, a sensitivity analysis to soil moisture variations as a rain effect has been performed at several microwave bands over the lower Bermejo basin, a subtropical area of Argentina mostly spread by moderately dense forests. Parameters such as emissivity and Polarization Index have been considered to carry out the study. In particular, the performance of L-band SMOS measurements has been compared with C and X band AMSR-E one, highlighting the better achievement of the lower frequencies due to the weaker interaction with the vegetation structures. This work intends to give a contribution in the subject of soil moisture sensitivity, which is a preliminary step in the development of retrieval algorithms.Fil: Vittucci, Cristina. Universita Tor Vergata. Centro Interdipartimentale Vito Volterra; ItaliaFil: Guerriero, Leila. Universita Tor Vergata. Centro Interdipartimentale Vito Volterra; ItaliaFil: Ferrazzoli, Paolo. Universita Tor Vergata. Centro Interdipartimentale Vito Volterra; ItaliaFil: Rahmoune, Rachid. Universita Tor Vergata. Centro Interdipartimentale Vito Volterra; ItaliaFil: Barraza Bernadas, Verónica Daniela. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Microwave radiative transfer studies of precipitation

    Get PDF
    Since the deployment of the DMSP SSM/I microwave imagers in 1987, increased utilization of passive microwave radiometry throughout the 10 - 100 GHz spectrum has occurred for measurement of atmospheric constituents and terrestrial surfaces. Our efforts have focused on observations and analysis of the microwave radiative transfer behavior of precipitating clouds. We have focused particular attention on combining both aircraft and SSM/I radiometer imagery with ground-based multiparameter radar observations. As part of this and the past NASA contract, we have developed a multi-stream, polarized radiative transfer model which incorporates scattering. The model has the capability to be initialized with cloud model output or multiparameter radar products. This model provides the necessary 'link' between the passive microwave radiometer and active microwave radar observations. This unique arrangement has allowed the brightness temperatures (TB) to be compared against quantities such as rainfall, liquid/ice water paths, and the vertical structure of the cloud. Quantification of the amounts of ice and water in precipitating clouds is required for understanding of the global energy balance

    Comparisons of precipitation measurements by the Advanced Microwave Precipitation Radiometer and multiparameter radar

    Get PDF
    Includes bibliographical references.Multiparameter microwave radar measurements are based on dual-polarization and dual-frequency techniques and are well suited for microphysical inferences of complex precipitating clouds, since they depend upon the size, shape, composition, and orientation of a collection of discrete random scatterers. Passive microwave radiometer observations represent path integrated scattering and absorption phenomena of the same scatterers. The response of the upwelling brightness temperatures TB to the precipitation structure depends on the vertical distribution of the various hydrometeors and gases, and the surface features. As a result, combinations of both active and passive techniques contain great potential to markedly improve the longstanding issue of precipitation measurement from space. The NASA airborne Advanced Microwave Precipitation Radiometer (AMPR) and the National Center for Atmospheric Research (NCAR) CP-2 multiparameter radar were jointly operated during the 1991 Convection and Precipitation/Electrification experiment (CaPE) in central Florida. The AMPR is a four channel, high resolution, across-track scanning total power radiometer system using the identical multifrequency feedhorn as the widely utilized Special Sensor Microwave/Imager (SSM/I) satellite system. Surface and precipitation features are separable based on the TB behavior as a function of the AMPR channels. The radar observations are presented in a remapped format suitable for comparison with the multifrequency AMPR imagery. Striking resemblances are noted between the AMPR imagery and the radar reflectivity at successive heights, while vertical profiles of the CP-2 products along the nadir trace suggest a storm structure consistent with the viewed AMPR TB. Directly over the storm cores, the difference between the 37 and 85 GHz TB was noted to approach (and in some cases fall below) zero. Microwave radiative transfer computations show that this is theoretically possible for hail regions suspended aloft in the core of strong convective storms.This work was supported by the NASA Earth Science and Applications Division under Grant NAG8-890. The National Center for Atmospheric Research is sponsored by the National Science Foundation

    A review of applications of microwave radiometry to oceanography

    Get PDF
    The emissivity of sea ice and atmospheric precipitation was investigated. Using the above physics, the data from the Electrically Scanning Microwave Radiometers (ESMR's) on the Nimbus-5 and Nimbus-6 satellites operating at wavelengths of 1.55 cm and 8mm, respectively, can be interpreted in terms of rain rate, ice coverage, and first year versus multi-year ice determination. The rain rate data is being used to establish a climatology of rainfall over the oceans. Both ice and rain data sets have been generated for the Global Atmospheric Research Project Data Systems Test

    L-Band Radiometers Measuring Salinity From Space: Atmospheric Propagation Effects

    Get PDF

    Global Precipitation Measurement

    Get PDF
    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era

    Passive Microwave Remote Sensing of Rain from Satellite Sensors

    Get PDF

    Summary of the Active Microwave Workshop, chapter 1

    Get PDF
    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications

    Microwave remote sensing from space for earth resource surveys

    Get PDF
    The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated

    A microwave systems approach to measuring root zone soil moisture

    Get PDF
    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm
    corecore