3 research outputs found

    Microwave Radiometer (MWR) Handbook

    Full text link

    Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign

    Get PDF
    Retrieval of water vapor mixing ratio using the Howard University Raman Lidar is presented with emphasis on three aspects: i) performance of the lidar against collocated radiosondes and Raman lidar, ii) investigation of the atmospheric state variables when poor agreement between lidar and radiosondes values occurred and iii) a comparison with satellite-based measurements. The measurements were acquired during the Water Vapor Validation Experiment Sondes/Satellites 2006 field campaign. Ensemble averaging of water vapor mixing ratio data from ten night-time comparisons with Vaisala RS92 radiosondes shows on average an agreement within 10 % up to approx. 8 km. A similar analysis of lidar-to-lidar data of over 700 profiles revealed an agreement to within 20 % over the first 7 km (10 % below 4 km). A grid analysis, defined in the temperature - relative humidity space, was developed to characterize the lidar - radiosonde agreement and quantitatively localizes regions of strong and weak correlations as a function of altitude, temperature or relative humidity. Three main regions of weak correlation emerge: i) regions of low relative humidity and low temperature, ii) moderate relative humidity at low temperatures and iii) low relative humidity at moderate temperatures. Comparison of Atmospheric InfraRed Sounder and Tropospheric Emission Sounder satellites retrievals of moisture with that of Howard University Raman Lidar showed a general agreement in the trend but the formers miss a lot of the details in atmospheric structure due to their low resolution. A relative difference of about 20 % is usually found between lidar and satellites measurements

    Statistical modeling of radiometric error propagation in support of hyperspectral imaging inversion and optimized ground sensor network design

    Get PDF
    A method is presented that attempts to isolate the relative magnitudes of various error sources present in common algorithms for inverting the effects of atmospheric scattering and absorption on solar irradiance and determine in what ways, if any, operational ground truth measurement systems can be employed to reduce the overall error in retrieved reflectance factor. Error modeling and propagation methodology is developed for each link in the imaging chain, and representative values are determined for the purpose of exercising the model and observing the system behavior in response to a wide variety of inputs. Three distinct approaches to modelbased atmospheric inversion are compared in a common reflectance error space, where each contributor to the overall error in retrieved reflectance is examined in relation to the others. The modeling framework also allows for performance predictions resulting from the incorporation of operational ground truth measurements. Regimes were identified in which uncertainty in water vapor and aerosols were each found to dominate error contributions to final retrieved reflectance. Cloud cover was also shown to be a significant contributor, while state-of-the-industry hyperspectral sensors were confirmed to not be error drivers. Accordingly, instruments for measuring water vapor, aerosols, and downwelled sky radiance were identified as key to improving reflectance retrieval beyond current performance by current inversion algorithms
    corecore