526 research outputs found

    Efficient large-scale airborne LiDAR data classification via fully convolutional network

    Get PDF
    Nowadays, we are witnessing an increasing availability of large-scale airborne LiDAR (Light Detection and Ranging) data, that greatly improve our knowledge of urban areas and natural environment. In order to extract useful information from these massive point clouds, appropriate data processing is required, including point cloud classification. In this paper we present a deep learning method to efficiently perform the classification of large-scale LiDAR data, ensuring a good trade-off between speed and accuracy. The algorithm employs the projection of the point cloud into a two-dimensional image, where every pixel stores height, intensity, and echo information of the point falling in the pixel. The image is then segmented by a Fully Convolutional Network (FCN), assigning a label to each pixel and, consequently, to the corresponding point. In particular, the proposed approach is applied to process a dataset of 7700\u2009km2 that covers the entire Friuli Venezia Giulia region (Italy), allowing to distinguish among five classes (i ground, vegetation, roof, overground and power line/i), with an overall accuracy of 92.9%

    Density-Aware Convolutional Networks with Context Encoding for Airborne LiDAR Point Cloud Classification

    Full text link
    To better address challenging issues of the irregularity and inhomogeneity inherently present in 3D point clouds, researchers have been shifting their focus from the design of hand-craft point feature towards the learning of 3D point signatures using deep neural networks for 3D point cloud classification. Recent proposed deep learning based point cloud classification methods either apply 2D CNN on projected feature images or apply 1D convolutional layers directly on raw point sets. These methods cannot adequately recognize fine-grained local structures caused by the uneven density distribution of the point cloud data. In this paper, to address this challenging issue, we introduced a density-aware convolution module which uses the point-wise density to re-weight the learnable weights of convolution kernels. The proposed convolution module is able to fully approximate the 3D continuous convolution on unevenly distributed 3D point sets. Based on this convolution module, we further developed a multi-scale fully convolutional neural network with downsampling and upsampling blocks to enable hierarchical point feature learning. In addition, to regularize the global semantic context, we implemented a context encoding module to predict a global context encoding and formulated a context encoding regularizer to enforce the predicted context encoding to be aligned with the ground truth one. The overall network can be trained in an end-to-end fashion with the raw 3D coordinates as well as the height above ground as inputs. Experiments on the International Society for Photogrammetry and Remote Sensing (ISPRS) 3D labeling benchmark demonstrated the superiority of the proposed method for point cloud classification. Our model achieved a new state-of-the-art performance with an average F1 score of 71.2% and improved the performance by a large margin on several categories

    Development of Mining Sector Applications for Emerging Remote Sensing and Deep Learning Technologies

    Get PDF
    This thesis uses neural networks and deep learning to address practical, real-world problems in the mining sector. The main focus is on developing novel applications in the area of object detection from remotely sensed data. This area has many potential mining applications and is an important part of moving towards data driven strategic decision making across the mining sector. The scientific contributions of this research are twofold; firstly, each of the three case studies demonstrate new applications which couple remote sensing and neural network based technologies for improved data driven decision making. Secondly, the thesis presents a framework to guide implementation of these technologies in the mining sector, providing a guide for researchers and professionals undertaking further studies of this type. The first case study builds a fully connected neural network method to locate supporting rock bolts from 3D laser scan data. This method combines input features from the remote sensing and mobile robotics research communities, generating accuracy scores up to 22% higher than those found using either feature set in isolation. The neural network approach also is compared to the widely used random forest classifier and is shown to outperform this classifier on the test datasets. Additionally, the algorithms’ performance is enhanced by adding a confusion class to the training data and by grouping the output predictions using density based spatial clustering. The method is tested on two datasets, gathered using different laser scanners, in different types of underground mines which have different rock bolting patterns. In both cases the method is found to be highly capable of detecting the rock bolts with recall scores of 0.87-0.96. The second case study investigates modern deep learning for LiDAR data. Here, multiple transfer learning strategies and LiDAR data representations are examined for the task of identifying historic mining remains. A transfer learning approach based on a Lunar crater detection model is used, due to the task similarities between both the underlying data structures and the geometries of the objects to be detected. The relationship between dataset resolution and detection accuracy is also examined, with the results showing that the approach is capable of detecting pits and shafts to a high degree of accuracy with precision and recall scores between 0.80-0.92, provided the input data is of sufficient quality and resolution. Alongside resolution, different LiDAR data representations are explored, showing that the precision-recall balance varies depending on the input LiDAR data representation. The third case study creates a deep convolutional neural network model to detect artisanal scale mining from multispectral satellite data. This model is trained from initialisation without transfer learning and demonstrates that accurate multispectral models can be built from a smaller training dataset when appropriate design and data augmentation strategies are adopted. Alongside the deep learning model, novel mosaicing algorithms are developed both to improve cloud cover penetration and to decrease noise in the final prediction maps. When applied to the study area, the results from this model provide valuable information about the expansion, migration and forest encroachment of artisanal scale mining in southwestern Ghana over the last four years. Finally, this thesis presents an implementation framework for these neural network based object detection models, to generalise the findings from this research to new mining sector deep learning tasks. This framework can be used to identify applications which would benefit from neural network approaches; to build the models; and to apply these algorithms in a real world environment. The case study chapters confirm that the neural network models are capable of interpreting remotely sensed data to a high degree of accuracy on real world mining problems, while the framework guides the development of new models to solve a wide range of related challenges

    Clearing the Clouds: Extracting 3D information from amongst the noise

    Get PDF
    Advancements permitting the rapid extraction of 3D point clouds from a variety of imaging modalities across the global landscape have provided a vast collection of high fidelity digital surface models. This has created a situation with unprecedented overabundance of 3D observations which greatly outstrips our current capacity to manage and infer actionable information. While years of research have removed some of the manual analysis burden for many tasks, human analysis is still a cornerstone of 3D scene exploitation. This is especially true for complex tasks which necessitate comprehension of scale, texture and contextual learning. In order to ameliorate the interpretation burden and enable scientific discovery from this volume of data, new processing paradigms are necessary to keep pace. With this context, this dissertation advances fundamental and applied research in 3D point cloud data pre-processing and deep learning from a variety of platforms. We show that the representation of 3D point data is often not ideal and sacrifices fidelity, context or scalability. First ground scanning terrestrial LIght Detection And Ranging (LiDAR) models are shown to have an inherent statistical bias, and present a state of the art method for correcting this, while preserving data fidelity and maintaining semantic structure. This technique is assessed in the dense canopy of Micronesia, with our technique being the best at retaining high levels of detail under extreme down-sampling (\u3c 1%). Airborne systems are then explored with a method which is presented to pre-process data to preserve a global contrast and semantic content in deep learners. This approach is validated with a building footprint detection task from airborne imagery captured in Eastern TN from the 3D Elevation Program (3DEP), our approach was found to achieve significant accuracy improvements over traditional techniques. Finally, topography data spanning the globe is used to assess past and previous global land cover change. Utilizing Shuttle Radar Topography Mission (SRTM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, paired with the airborne preprocessing technique described previously, a model for predicting land-cover change from topography observations is described. The culmination of these efforts have the potential to enhance the capabilities of automated 3D geospatial processing, substantially lightening the burden of analysts, with implications improving our responses to global security, disaster response, climate change, structural design and extraplanetary exploration
    • …
    corecore