186 research outputs found

    Abnormality detection using graph matching for multi-task dynamics of autonomous systems

    Get PDF
    Self-learning abilities in autonomous systems are essential to improve their situational awareness and detection of normal/abnormal situations. In this work, we propose a graph matching technique for activity detection in autonomous agents by using the Gromov-Wasserstein framework. A clustering approach is used to discretise continuous agents' states related to a specific task into a set of nodes with similar objectives. Additionally, a probabilistic transition matrix between nodes is used as edges weights to build a graph. In this paper, we extract an abnormal area based on a sub-graph that encodes the differences between coupled of activities. Such sub-graph is obtained by applying a threshold on the optimal transport matrix, which is obtained through the graph matching procedure. The obtained results are evaluated through experiments performed by a robot in a simulated environment and by a real autonomous vehicle moving within a University Campus

    Exploiting Edge Features in Graphs with Fused Network Gromov-Wasserstein Distance

    Full text link
    Pairwise comparison of graphs is key to many applications in Machine learning ranging from clustering, kernel-based classification/regression and more recently supervised graph prediction. Distances between graphs usually rely on informative representations of these structured objects such as bag of substructures or other graph embeddings. A recently popular solution consists in representing graphs as metric measure spaces, allowing to successfully leverage Optimal Transport, which provides meaningful distances allowing to compare them: the Gromov-Wasserstein distances. However, this family of distances overlooks edge attributes, which are essential for many structured objects. In this work, we introduce an extension of Gromov-Wasserstein distance for comparing graphs whose both nodes and edges have features. We propose novel algorithms for distance and barycenter computation. We empirically show the effectiveness of the novel distance in learning tasks where graphs occur in either input space or output space, such as classification and graph prediction

    Graph Interpolation via Fast Fused-Gromovization

    Full text link
    Graph data augmentation has proven to be effective in enhancing the generalizability and robustness of graph neural networks (GNNs) for graph-level classifications. However, existing methods mainly focus on augmenting the graph signal space and the graph structure space independently, overlooking their joint interaction. This paper addresses this limitation by formulating the problem as an optimal transport problem that aims to find an optimal strategy for matching nodes between graphs considering the interactions between graph structures and signals. To tackle this problem, we propose a novel graph mixup algorithm dubbed FGWMixup, which leverages the Fused Gromov-Wasserstein (FGW) metric space to identify a "midpoint" of the source graphs. To improve the scalability of our approach, we introduce a relaxed FGW solver that accelerates FGWMixup by enhancing the convergence rate from O(t−1)\mathcal{O}(t^{-1}) to O(t−2)\mathcal{O}(t^{-2}). Extensive experiments conducted on five datasets, utilizing both classic (MPNNs) and advanced (Graphormers) GNN backbones, demonstrate the effectiveness of FGWMixup in improving the generalizability and robustness of GNNs

    Hybrid Gromov-Wasserstein Embedding for Capsule Learning

    Full text link
    Capsule networks (CapsNets) aim to parse images into a hierarchy of objects, parts, and their relations using a two-step process involving part-whole transformation and hierarchical component routing. However, this hierarchical relationship modeling is computationally expensive, which has limited the wider use of CapsNet despite its potential advantages. The current state of CapsNet models primarily focuses on comparing their performance with capsule baselines, falling short of achieving the same level of proficiency as deep CNN variants in intricate tasks. To address this limitation, we present an efficient approach for learning capsules that surpasses canonical baseline models and even demonstrates superior performance compared to high-performing convolution models. Our contribution can be outlined in two aspects: firstly, we introduce a group of subcapsules onto which an input vector is projected. Subsequently, we present the Hybrid Gromov-Wasserstein framework, which initially quantifies the dissimilarity between the input and the components modeled by the subcapsules, followed by determining their alignment degree through optimal transport. This innovative mechanism capitalizes on new insights into defining alignment between the input and subcapsules, based on the similarity of their respective component distributions. This approach enhances CapsNets' capacity to learn from intricate, high-dimensional data while retaining their interpretability and hierarchical structure. Our proposed model offers two distinct advantages: (i) its lightweight nature facilitates the application of capsules to more intricate vision tasks, including object detection; (ii) it outperforms baseline approaches in these demanding tasks

    Graph Optimal Transport with Transition Couplings of Random Walks

    Full text link
    We present a novel approach to optimal transport between graphs from the perspective of stationary Markov chains. A weighted graph may be associated with a stationary Markov chain by means of a random walk on the vertex set with transition distributions depending on the edge weights of the graph. After drawing this connection, we describe how optimal transport techniques for stationary Markov chains may be used in order to perform comparison and alignment of the graphs under study. In particular, we propose the graph optimal transition coupling problem, referred to as GraphOTC, in which the Markov chains associated to two given graphs are optimally synchronized to minimize an expected cost. The joint synchronized chain yields an alignment of the vertices and edges in the two graphs, and the expected cost of the synchronized chain acts as a measure of distance or dissimilarity between the two graphs. We demonstrate that GraphOTC performs equal to or better than existing state-of-the-art techniques in graph optimal transport for several tasks and datasets. Finally, we also describe a generalization of the GraphOTC problem, called the FusedOTC problem, from which we recover the GraphOTC and OT costs as special cases

    Image-to-Image Retrieval by Learning Similarity between Scene Graphs

    Full text link
    As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.Comment: Accepted to AAAI 202
    • …
    corecore