5 research outputs found

    Three more Decades in Array Signal Processing Research: An Optimization and Structure Exploitation Perspective

    Full text link
    The signal processing community currently witnesses the emergence of sensor array processing and Direction-of-Arrival (DoA) estimation in various modern applications, such as automotive radar, mobile user and millimeter wave indoor localization, drone surveillance, as well as in new paradigms, such as joint sensing and communication in future wireless systems. This trend is further enhanced by technology leaps and availability of powerful and affordable multi-antenna hardware platforms. The history of advances in super resolution DoA estimation techniques is long, starting from the early parametric multi-source methods such as the computationally expensive maximum likelihood (ML) techniques to the early subspace-based techniques such as Pisarenko and MUSIC. Inspired by the seminal review paper Two Decades of Array Signal Processing Research: The Parametric Approach by Krim and Viberg published in the IEEE Signal Processing Magazine, we are looking back at another three decades in Array Signal Processing Research under the classical narrowband array processing model based on second order statistics. We revisit major trends in the field and retell the story of array signal processing from a modern optimization and structure exploitation perspective. In our overview, through prominent examples, we illustrate how different DoA estimation methods can be cast as optimization problems with side constraints originating from prior knowledge regarding the structure of the measurement system. Due to space limitations, our review of the DoA estimation research in the past three decades is by no means complete. For didactic reasons, we mainly focus on developments in the field that easily relate the traditional multi-source estimation criteria and choose simple illustrative examples.Comment: 16 pages, 8 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    The Integrated Sensing and Communication Revolution for 6G: Vision, Techniques, and Applications

    Full text link
    Future wireless networks will integrate sensing, learning and communication to provide new services beyond communication and to become more resilient. Sensors at the network infrastructure, sensors on the user equipment, and the sensing capability of the communication signal itself provide a new source of data that connects the physical and radio frequency environments. A wireless network that harnesses all these sensing data can not only enable additional sensing services, but also become more resilient to channel-dependent effects like blockage and better support adaptation in dynamic environments as networks reconfigure. In this paper, we provide a vision for integrated sensing and communication (ISAC) networks and an overview of how signal processing, optimization and machine learning techniques can be leveraged to make them a reality in the context of 6G. We also include some examples of the performance of several of these strategies when evaluated using a simulation framework based on a combination of ray tracing measurements and mathematical models that mix the digital and physical worlds

    Compressive Acquisition and Processing of Sparse Analog Signals

    Get PDF
    Since the advent of the first digital processing units, the importance of digital signal processing has been steadily rising. Today, most signal processing happens in the digital domain, requiring that analog signals be first sampled and digitized before any relevant data can be extracted from them. The recent explosion of the demands for data acquisition, storage and processing, however, has pushed the capabilities of conventional acquisition systems to their limits in many application areas. By offering an alternative view on the signal acquisition process, ideas from sparse signal processing and one of its main beneficiaries compressed sensing (CS), aim at alleviating some of these problems. In this thesis, we look into the ways the application of a compressive measurement kernel impacts the signal recovery performance and investigate methods to infer the current signal complexity from the compressive observations. We then study a particular application, namely that of sub-Nyquist sampling and processing of sparse analog multiband signals in spectral, angular and spatial domains.Seit dem Aufkommen der ersten digitalen Verarbeitungseinheiten hat die Bedeutung der digitalen Signalverarbeitung stetig zugenommen. Heutzutage findet die meiste Signalverarbeitung im digitalen Bereich statt, was erfordert, dass analoge Signale zuerst abgetastet und digitalisiert werden, bevor relevante Daten daraus extrahiert werden können. Jahrzehntelang hat die herkömmliche äquidistante Abtastung, die durch das Nyquist-Abtasttheorem bestimmt wird, zu diesem Zweck ein nahezu universelles Mittel bereitgestellt. Der kürzliche explosive Anstieg der Anforderungen an die Datenerfassung, -speicherung und -verarbeitung hat jedoch die Fähigkeiten herkömmlicher Erfassungssysteme in vielen Anwendungsbereichen an ihre Grenzen gebracht. Durch eine alternative Sichtweise auf den Signalerfassungsprozess können Ideen aus der sparse Signalverarbeitung und einer ihrer Hauptanwendungsgebiete, Compressed Sensing (CS), dazu beitragen, einige dieser Probleme zu mindern. Basierend auf der Annahme, dass der Informationsgehalt eines Signals oft viel geringer ist als was von der nativen Repräsentation vorgegeben, stellt CS ein alternatives Konzept für die Erfassung und Verarbeitung bereit, das versucht, die Abtastrate unter Beibehaltung des Signalinformationsgehalts zu reduzieren. In dieser Arbeit untersuchen wir einige der Grundlagen des endlichdimensionalen CSFrameworks und seine Verbindung mit Sub-Nyquist Abtastung und Verarbeitung von sparsen analogen Signalen. Obwohl es seit mehr als einem Jahrzehnt ein Schwerpunkt aktiver Forschung ist, gibt es noch erhebliche Lücken beim Verständnis der Auswirkungen von komprimierenden Ansätzen auf die Signalwiedergewinnung und die Verarbeitungsleistung, insbesondere bei rauschbehafteten Umgebungen und in Bezug auf praktische Messaufgaben. In dieser Dissertation untersuchen wir, wie sich die Anwendung eines komprimierenden Messkerns auf die Signal- und Rauschcharakteristiken auf die Signalrückgewinnungsleistung auswirkt. Wir erforschen auch Methoden, um die aktuelle Signal-Sparsity-Order aus den komprimierten Messungen abzuleiten, ohne auf die Nyquist-Raten-Verarbeitung zurückzugreifen, und zeigen den Vorteil, den sie für den Wiederherstellungsprozess bietet. Nachdem gehen wir zu einer speziellen Anwendung, nämlich der Sub-Nyquist-Abtastung und Verarbeitung von sparsen analogen Multibandsignalen. Innerhalb des Sub-Nyquist-Abtastung untersuchen wir drei verschiedene Multiband-Szenarien, die Multiband-Sensing in der spektralen, Winkel und räumlichen-Domäne einbeziehen.Since the advent of the first digital processing units, the importance of digital signal processing has been steadily rising. Today, most signal processing happens in the digital domain, requiring that analog signals be first sampled and digitized before any relevant data can be extracted from them. For decades, conventional uniform sampling that is governed by the Nyquist sampling theorem has provided an almost universal means to this end. The recent explosion of the demands for data acquisition, storage and processing, however, has pushed the capabilities of conventional acquisition systems to their limits in many application areas. By offering an alternative view on the signal acquisition process, ideas from sparse signal processing and one of its main beneficiaries compressed sensing (CS), have the potential to assist alleviating some of these problems. Building on the premise that the signal information rate is often much lower than what is dictated by its native representation, CS provides an alternative acquisition and processing framework that attempts to reduce the sampling rate while preserving the information content of the signal. In this thesis, we explore some of the basic foundations of the finite-dimensional CS framework and its connection to sub-Nyquist sampling and processing of sparse continuous analog signals with application to multiband sensing. Despite being a focus of active research for over a decade, there still remain signi_cant gaps in understanding the implications that compressive approaches have on the signal recovery and processing performance, especially against noisy settings and in relation to practical sampling problems. This dissertation aims at filling some of these gaps. More specifically, we look into the ways the application of a compressive measurement kernel impacts signal and noise characteristics and the relation it has to the signal recovery performance. We also investigate methods to infer the current complexity of the signal scene from the reduced-rate compressive observations without resorting to Nyquist-rate processing and show the advantage this knowledge offers to the recovery process. Having considered some of the universal aspects of compressive systems, we then move to studying a particular application, namely that of sub-Nyquist sampling and processing of sparse analog multiband signals. Within the sub-Nyquist sampling framework, we examine three different multiband scenarios that involve multiband sensing in spectral, angular and spatial domains. For each of them, we provide a sub-Nyquist receiver architecture, develop recovery methods and numerically evaluate their performance

    Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    Get PDF
    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore