7 research outputs found

    Radar-based Dynamic Occupancy Grid Mapping and Object Detection

    Full text link
    Environment modeling utilizing sensor data fusion and object tracking is crucial for safe automated driving. In recent years, the classical occupancy grid map approach, which assumes a static environment, has been extended to dynamic occupancy grid maps, which maintain the possibility of a low-level data fusion while also estimating the position and velocity distribution of the dynamic local environment. This paper presents the further development of a previous approach. To the best of the author's knowledge, there is no publication about dynamic occupancy grid mapping with subsequent analysis based only on radar data. Therefore in this work, the data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied. Subsequently, the clustering of dynamic areas provides high-level object information. For comparison, also a lidar-based method is developed. The approach is evaluated qualitatively and quantitatively with real-world data from a moving vehicle in urban environments. The evaluation illustrates the advantages of the radar-based dynamic occupancy grid map, considering different comparison metrics.Comment: Accepted to be published as part of the 23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, September 20-23, 202

    Semantic evidential grid mapping using monocular and stereo cameras

    Get PDF
    Accurately estimating the current state of local traffic scenes is one of the key problems in the development of software components for automated vehicles. In addition to details on free space and drivability, static and dynamic traffic participants and information on the semantics may also be included in the desired representation. Multi-layer grid maps allow the inclusion of all of this information in a common representation. However, most existing grid mapping approaches only process range sensor measurements such as Lidar and Radar and solely model occupancy without semantic states. In order to add sensor redundancy and diversity, it is desired to add vision-based sensor setups in a common grid map representation. In this work, we present a semantic evidential grid mapping pipeline, including estimates for eight semantic classes, that is designed for straightforward fusion with range sensor data. Unlike other publications, our representation explicitly models uncertainties in the evidential model. We present results of our grid mapping pipeline based on a monocular vision setup and a stereo vision setup. Our mapping results are accurate and dense mapping due to the incorporation of a disparity- or depth-based ground surface estimation in the inverse perspective mapping. We conclude this paper by providing a detailed quantitative evaluation based on real traffic scenarios in the KITTI odometry benchmark dataset and demonstrating the advantages compared to other semantic grid mapping approaches

    Stochastic Model Predictive Control with a Safety Guarantee for Automated Driving

    Full text link
    Automated vehicles require efficient and safe planning to maneuver in uncertain environments. Largely this uncertainty is caused by other traffic participants, e.g., surrounding vehicles. Future motion of surrounding vehicles is often difficult to predict. Whereas robust control approaches achieve safe, yet conservative motion planning for automated vehicles, Stochastic Model Predictive Control (SMPC) provides efficient planning in the presence of uncertainty. Probabilistic constraints are applied to ensure that the maximal risk remains below a predefined level. However, safety cannot be ensured as probabilistic constraints may be violated, which is not acceptable for automated vehicles. Here, we propose an efficient trajectory planning framework with safety guarantees for automated vehicles. SMPC is applied to obtain efficient vehicle trajectories for a finite horizon. Based on the first optimized SMPC input, a guaranteed safe backup trajectory is planned, using reachable sets. The SMPC input is only applied to the vehicle if a safe backup solution can be found. If no new safe backup solution can be found, the previously calculated, still valid safe backup solution is applied instead of the SMPC solution. Recursive feasibility of the safe SMPC algorithm is proved. Highway simulations show the effectiveness of the proposed method regarding performance and safety

    Development and evaluation of low cost 2-d lidar based traffic data collection methods

    Get PDF
    Traffic data collection is one of the essential components of a transportation planning exercise. Granular traffic data such as volume count, vehicle classification, speed measurement, and occupancy, allows managing transportation systems more effectively. For effective traffic operation and management, authorities require deploying many sensors across the network. Moreover, the ascending efforts to achieve smart transportation aspects put immense pressure on planning authorities to deploy more sensors to cover an extensive network. This research focuses on the development and evaluation of inexpensive data collection methodology by using two-dimensional (2-D) Light Detection and Ranging (LiDAR) technology. LiDAR is adopted since it is economical and easily accessible technology. Moreover, its 360-degree visibility and accurate distance information make it more reliable. To collect traffic count data, the proposed method integrates a Continuous Wavelet Transform (CWT), and Support Vector Machine (SVM) into a single framework. Proof-of-Concept (POC) test is conducted in three different places in Newark, New Jersey to examine the performance of the proposed method. The POC test results demonstrate that the proposed method achieves acceptable performances, resulting in 83% ~ 94% accuracy. It is discovered that the proposed method\u27s accuracy is affected by the color of the exterior surface of a vehicle since some colored surfaces do not produce enough reflective rays. It is noticed that the blue and black colors are less reflective, while white-colored surfaces produce high reflective rays. A methodology is proposed that comprises K-means clustering, inverse sensor model, and Kalman filter to obtain trajectories of the vehicles at the intersections. The primary purpose of vehicle detection and tracking is to obtain the turning movement counts at an intersection. A K-means clustering is an unsupervised machine learning technique that clusters the data into different groups by analyzing the smallest mean of a data point from the centroid. The ultimate objective of applying K-mean clustering is to identify the difference between pedestrians and vehicles. An inverse sensor model is a state model of occupancy grid mapping that localizes the detected vehicles on the grid map. A constant velocity model based Kalman filter is defined to track the trajectory of the vehicles. The data are collected from two intersections located in Newark, New Jersey, to study the accuracy of the proposed method. The results show that the proposed method has an average accuracy of 83.75%. Furthermore, the obtained R-squared value for localization of the vehicles on the grid map is ranging between 0.87 to 0.89. Furthermore, a primary cost comparison is made to study the cost efficiency of the developed methodology. The cost comparison shows that the proposed methodology based on 2-D LiDAR technology can achieve acceptable accuracy at a low price and be considered a smart city concept to conduct extensive scale data collection

    Grid-Based Environment Estimation Using Evidential Mapping and Particle Tracking

    No full text
    corecore