599,671 research outputs found
Stability of grid amplifiers
We present a stability model for quasi-optical grid amplifiers. This model is useful for predicting and suppressing the common-mode oscillations that often occur in amplifier grids. Three stabilization techniques will be discussed. The first technique uses a capacitor to stabilize the grid. The second approach employs resistance to suppress the oscillations. The final technique stabilizes the grid by reducing the on-chip common-mode resistance, allowing greatly increased amplifier efficiencies. Experimental evidence will be presented to confirm the validity of our stability model
Impedance-compensated grid synchronisation for extending the stability range of weak grids with voltage source converters
This paper demonstrates how the range of stable power transfer in weak grids with voltage source converters (VSCs) can be extended by modifying the grid synchronisation mechanism of a conventional synchronous reference frame phase locked loop (PLL). By introducing an impedance-conditioning term in the PLL, the VSC control system can be virtually synchronised to a stronger point in the grid to counteract the instability effects caused by high grid impedance. To verify the effectiveness of the proposed approach, the maximum static power transfer capability and the small-signal stability range of a system with a VSC HVDC terminal connected to a weak grid are calculated from an analytical model with different levels of impedance-conditioning in the PLL. Such calculations are presented for two different configurations of the VSC control system, showing how both the static power transfer capability and the small-signal stability range can be significantly improved. The validity of the stability assessment is verified by time-domain simulations in the Matlab/Simulink environment.Peer ReviewedPostprint (published version
Taming Instabilities in Power Grid Networks by Decentralized Control
Renewables will soon dominate energy production in our electric power system.
And yet, how to integrate renewable energy into the grid and the market is
still a subject of major debate. Decentral Smart Grid Control (DSGC) was
recently proposed as a robust and decentralized approach to balance supply and
demand and to guarantee a grid operation that is both economically and
dynamically feasible. Here, we analyze the impact of network topology by
assessing the stability of essential network motifs using both linear stability
analysis and basin volume for delay systems. Our results indicate that if
frequency measurements are averaged over sufficiently large time intervals,
DSGC enhances the stability of extended power grid systems. We further
investigate whether DSGC supports centralized and/or decentralized power
production and find it to be applicable to both. However, our results on
cycle-like systems suggest that DSGC favors systems with decentralized
production. Here, lower line capacities and lower averaging times are required
compared to those with centralized production.Comment: 21 pages, 6 figures This is a pre-print of a manuscript submitted to
The European Physical Journal. The final publication is available at Springer
via http://dx.doi.org/10.1140/epjst/e2015-50136-
Self-Organized Synchronization and Voltage Stability in Networks of Synchronous Machines
The integration of renewable energy sources in the course of the energy
transition is accompanied by grid decentralization and fluctuating power
feed-in characteristics. This raises new challenges for power system stability
and design. We intend to investigate power system stability from the viewpoint
of self-organized synchronization aspects. In this approach, the power grid is
represented by a network of synchronous machines. We supplement the classical
Kuramoto-like network model, which assumes constant voltages, with dynamical
voltage equations, and thus obtain an extended version, that incorporates the
coupled categories voltage stability and rotor angle synchronization. We
compare disturbance scenarios in small systems simulated on the basis of both
classical and extended model and we discuss resultant implications and possible
applications to complex modern power grids.Comment: 9 pages, 9 figure
- …
