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Abstract: This paper demonstrates how the range of stable power transfer in weak grids with voltage source converters
(VSCs) can be extended by modifying the grid synchronisation mechanism of a conventional synchronous reference
frame phase locked loop (PLL). By introducing an impedance-conditioning term in the PLL, the VSC control system can
be virtually synchronised to a stronger point in the grid to counteract the instability effects caused by high grid
impedance. To verify the effectiveness of the proposed approach, the maximum static power transfer capability and
the small-signal stability range of a system with a VSC HVDC terminal connected to a weak grid are calculated from an
analytical model with different levels of impedance-conditioning in the PLL. Such calculations are presented for two
different configurations of the VSC control system, showing how both the static power transfer capability and the
small-signal stability range can be significantly improved. The validity of the stability assessment is verified by
time-domain simulations in the Matlab/Simulink environment.

1 Introduction

Stability challenges related to interaction with the grid impedance are
known to appear when voltage source converters (VSCs) are
operating in very weak grids with low short-circuit ratio (SCR).
Since very weak grids are most commonly encountered for HVDC
transmission systems, several studies on the stability of VSC-based
HVDC converter stations under such conditions have been
published during the last years [1-8]. However, similar stability
problems can also occur for VSCs utilised in grid integration of
renewables or in weak distribution systems, as confirmed by
several recent publications [9-12].

From the previous studies investigating VSC stability limitations
under weak grid conditions, the identified instability phenomena
can be mainly associated with two aspects:

(1) The reactive power flow in the system has a significant impact
on the power transfer capability of a weak grid and by that on the
stable operating range of grid connected VSCs. Thus, local voltage
control and/or reactive power or current injection from the
converter have been shown to improve both the steady-state power
transfer capability and the large-signal transient stability range of
the VSC [1, 3-7, 13-15]. However, the stability range and the
effect of reactive power injection are closely related to the X/R
ratio or impedance angle of the equivalent grid impedance [4, 5].

(2) The phase locked loops (PLLs) commonly used for grid
synchronisation can strongly affect the dynamic performance and
the stability range of VSCs operating in weak grids [5, 9, 11, 12,
16-19]. In general, stability problems associated with the PLL are
related to the influence from the converter operation on the voltage
measurements used for the grid synchronisation. This has been
shown to cause a positive feedback mechanism which can provoke
instability when the grid impedance is high [11, 12]. The
corresponding effects on the VSC dynamics can be partially
attenuated by reducing the bandwidth of the PLL, but this will
result in a slower dynamic response of the converter [4, 5, 9, 17, 18].
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To avoid instabilities caused by the influence from the converter
operation on the local voltage measurements used for grid
synchronisation, a voltage sensorless approach for synchronising to
a remote and stronger point in a weak grid by a virtual flux-based
estimation was proposed in [20, 21]. This approach was shown
to significantly improve the VSC stability range and the power
transfer capability in a weak grid. The stability improvement was
attributed partly to the synchronisation to a remote and stiff
voltage, but also to the corresponding change of reference frame
orientation, which ensured an appropriate load-dependent reactive
power injection from the VSC. In case the total impedance was
known, sensorless synchronisation to the Thévenin equivalent
voltage of the grid allowed for stable operation close to the
theoretical limit of power transfer through the grid impedance, as
long as the VSC dc-bus voltage was maintained sufficiently high
to avoid over-modulation. A similar approach, combining a virtual
impedance with the estimation of virtual flux in the grid from local
voltage measurements rather than from a voltage-sensorless
estimation, was further proposed in [22]. More recently, control
systems, including a virtual impedance for similar purposes have
also been proposed in [23, 24]. However, all these approaches
require either a dedicated estimation method or an additional
impedance-based control loop in the VSC control system.

Another possible approach for improving the stability range of
VSC operation in weak grids is to apply control methods that
determine the phase angle reference by introducing a
power-balance-based synchronisation mechanism similar to the
operation principle of traditional synchronous machines. Thus the
‘power synchronisation controller’ proposed in [2, 3] or other
control methods that can be classified as virtual synchronous
machines [25-27] could be relevant for operation in weak grid
conditions. These control methods also have the advantage that
they can inherently allow for islanded operation and black-start
capability. However, a VSC cannot sustain the same large
transient currents as a synchronous machine, and must limit its
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currents during faults or temporary overload conditions. Thus,
power-balance-based synchronisation cannot be maintained under
severe transients and the VSC control system must be dynamically
changed into current limiting operation [2, 28], which again leads
to challenges related to on-line transfer between different control
loops. Thus, as long as stability challenges due to weak grid
conditions can be avoided, conventional current controlled
operation with grid synchronisation by a PLL can still be
considered as a simpler solution for VSCs that are not required to
operate in islanded mode.

To avoid the stability limitations of a PLL-synchronised VSC in a
weak grid, an impedance-based compensation term was introduced
in the traditional synchronous reference frame (SRF) PLL in [29].
The resulting impedance-conditioned PLL (IC-PLL) can ensure
quasi-stationary synchronisation to a remote point, and the same
extension of the stability range in a weak grid as the more
complicated control strategies discussed in [20-22]. The
implementation requires only simple calculations based on voltage
and current measurements to be included in the PLL. However,
the analysis presented in [29] was limited to a control system
configuration with a fixed value of the reactive current reference
for the VSC while most practical applications of VSC HVDC
systems in weak grids are required to control the local ac voltage
through a voltage control loop. Therefore, starting from the results
presented in [29], this paper will extend the analysis of the
stability improvements that can be achieved with the IC-PLL to
the case with an ac voltage control loop. The stability
improvements with both control system configurations will be first
identified from detailed state-space models and then verified by
time-domain simulations in the Matlab/Simulink environment.

2 Grid synchronisation for increasing the stability
range in weak grids

The influence of the proposed IC-PLL on the stability range is
investigated for a VSC HVDC terminal connected to a weak grid.
The system configuration, the assumed converter control structure and
the IC-PLL implementation are presented in the following subsections.

2.1 Overview of the general system configuration

The investigated system consists of a VSC HVDC converter terminal
connected to a high-impedance grid through an LC filter and a

PCC 7z,

transformer as shown in Fig. 1. The converter currents are
assumed to be controlled by conventional SRF decoupled
proportional—integral (PI) current controllers [30]. To avoid that
potential LC filter oscillations influence the stability range, an
active damping algorithm provides stabilising voltage references
Vap, as indicated in the figure [31, 32].

As shown in Fig. 1, an outer loop PI power controller is assumed
to provide the active current reference i, ;. However, in the same
way as the virtual flux-based methods from [20-22], the IC-PLL
will have a similar influence on the system stability for any
implementation of the power control. Thus, impact on the stability
range will be similar also in the case of feed-forward power
control where the active current reference results from a division
of the power reference by the measured grid voltage amplitude
[33], or with an outer loop dc-voltage controller [34]. It is also
indicated in Fig. 1 how two different control system configurations
for providing the reactive current reference i:qu are investigated. In
the following, these two configurations will be referred to as:

(1) Case 1: The control system configuration from [29], where
the reactive current reference is set to a fixed value (ig, , = 0).

(ii) Case 2: A control system configuration where the g-axis
current reference is provided by a Pl-controller regulating the local

ac voltage, as indicated in grey within Fig. 1

2.2 Impedance-conditioned PLL

A conventional PLL implementation according to [35], as indicated
in the upper part of Fig. 2, is assumed as the starting point for the
design of an impedance-conditioned synchronisation mechanism.
This PLL structure applies low-pass filters on the estimated d-axis
and g-axis voltage components, while an inverse tangent function
generates the phase angle error ey. A Pl-controller processing this
phase error tracks the grid frequency, which is the input to an
integrator producing the phase angle estimate Op;. The inverse
tangent function is preferred to maximise the linear tracking range
of the PLL, but the proposed impedance term can be included in
any other PLL implementation for orienting the SRF to the d-axis
(or g-axis) of a measured three-phase voltage signal [36].

The proposed impedance conditioning is obtained by subtracting a
quasi-stationary voltage drop across a virtual impedance from the
local voltage measurement input to the PLL. Thus, the PLL can
synchronise to an estimated, ‘remote’ voltage ¥y, expressed as a
complex space vector in (1) by assuming a virtual impedance
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Fig. 1 Overview of investigated configuration and control system for VSC operated in a weak grid

1316

IET Gener. Transm. Distrib., 2016, Vol. 10, Iss. 6, pp. 1315-1326

This is an open access article published by the IET under the Creative Commons Attribution -NonCommercial License

(http:/creativecommons.org/licenses/by-nc/3.0/)



Phase Locked Loop D

Pl-controller

k o k:’..ﬂr,.f.
S

p.PLL

Ly VCO
Ll ? L

= VPLL g Dy ppry

s+ (of.!’..l".'. L

atan2

L. vPLL,d @Dypprr

S+ @ppyy

Fig. 2 Schematic of the proposed IC-PLL

given in per unit as z, =7, +jw,l,. The only additional input to the
PLL is the grid-side current §,, which also must be transformed
into the dg reference frame established by the PLL

‘N)VI =V, — rvio —J- a}PLleio (1)

The corresponding implementation of the d-axis and g-axis voltage
drop across the virtual impedance term is shown in the lower right
of Fig. 2. As seen from the figure and from (1), the voltage drop
across the virtual inductance is proportional to the grid frequency
estimated by the PLL.

A vector diagram illustrating the potential impact of the proposed
impedance conditioning on the SRF orientation of the PLL is shown
in Fig. 3. In this figure, &, is the phase displacement between the grid
voltage v, and the voltage vector v, at the filter capacitors. This angle
indicates the range of SRF orientations that can be obtained by the
IC-PLL. The phase angle d6p.L ¢ is the steady-state displacement
between the grid voltage vector and the SRF orientation of the
IC-PLL given by the voltage vector #,. The instantaneous phase
angle estimated by the PLL is given by 0p;; and is used for the
SRF transformations in the control system. The vector diagram in
Fig. 3 indicates that the IC-PLL will synchronise directly to the
measured voltage as any conventional PLL when the virtual
impedance or the current flowing into the grid are equal to zero.
However, when the system is loaded, the virtual impedance can be
selected so that the PLL is synchronised to an estimated voltage at
any electrical distance between the locally measured voltages and
the equivalent grid voltage. Operation with zero reactive current
reference will then impose approximately zero reactive power flow
at the remote point of synchronisation. In case of high grid
impedance and high values of virtual impedance, this can require
excessively high output voltage and lead to over-modulation as
discussed in [20, 21].

It should be noted that the equivalent grid impedance as seen from
a converter is not always exactly known and might also change with
reconfigurations of the grid. Thus, a complete compensation of the
grid impedance might be impractical. However, it will be
demonstrated that any partial impedance compensation improves
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the stability range without any negative effects on the converter
operation. Furthermore, the proposed approach can be combined
with a remote measurement of active and/or reactive power flow to
allow for estimating the equivalent grid impedance as proposed
in [22].

3 Analysis of system stability limits

To characterise the improvements in terms of stationary power
transfer capability and small-signal stability that can be achieved
with the proposed IC-PLL, analytical models of the converter and
the control system structures from Fig. 1 have been developed.
These models are based on the modelling approach in [37] and are
reported in Appendix 1, while the corresponding small-signal
state-space representations are indicated in Appendix 2. This

B

A

Possible range of orientation

|

Fig. 3 Vector diagam showing the possible range of SRF orientaﬁor'%z for
the IC-PLL
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section presents an analysis of the two control system configurations
indicated in Fig. 1 by applying these models and the parameters
presented in Table 1 in Appendix 3. The results verify the claimed
improvement in stability range and illustrate how the impedance
conditioning can influence the operating conditions of the VSC
terminal.

3.1 Stability limits with conventional PLL

The stability limitations of the system from Fig. 1 are first
investigated with a conventional PLL for Case 1 and Case 2 in
both inverter (p>0) and rectifier (p <0) operations. The static
power transfer capability of the system is determined by solving
the non-linear steady-state equations according to (22) and (23),
and numerically searching for the maximum power transfer where
these equations have a solution. The small-signal stability
limitations are identified as the maximum active power transfer
leading to stable poles for the linearised models according to (25)
and (26). The results are plotted as a function of the equivalent
grid impedance in Fig. 4a for Case 1 and in Fig. 4b for Case
2. For these plots, a grid impedance angle ¢, of 80° is assumed
(@g =tan71[lg/rg]), where /, and r, are the equivalent per unit grid
inductance and grid resistance, including the series impedance of
the transformer indicated in Fig. 1.

The curves in Fig. 4 clearly indicate that the power transfer
capability of the system is decreasing non-linearly as the grid
impedance is increasing. For Case 1, the small-signal stability
range is identical to the static power transfer capability of the
system. Thus, attempting to transfer a power higher than the
identified stability limitations will result in a voltage collapse. For
rectifier operation, the power transfer capability is falling below
1.0 pu already for a grid impedance exceeding 0.4 pu (i.e. SRC=
2.5). As expected, the power transfer capability is higher for
inverter operation, but still the grid impedance must be below
about 0.6 pu (corresponding to an SCR of about 1.7) to transfer
1.0 pu power. Moreover, the plotted curves closely resemble an
inverse function of the grid impedance, which translates into a
power transfer capability linearly dependent on the SCR (since
SCR = 1/|z,|), equivalently to the results presented in [4].

Several differences can be noticed between Figs. 4a and b. First,
Case 2 results in a clear differentiation between the small-signal
stability limit and the static power transfer capability limit. Thus,
the system will experience small-signal instability as discussed in
[17] before the static power transfer capability is reached. Second,
the stability range is much wider for Case 2 than for Case 1. Thus,

Static power transfer capability: rectifier operation

i
4 -\ - :_ - - | = Static power transfer capability: inverter operation
l Small-signal stability limit: rectifier operation

| —

Maximum power transfer capability [pu]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Grid impedance: Iz,| [pu]
a

Fig. 4

a Case 1: fixed g-axis current reference equal to 0
b Case 2: ac voltage controller with 1.0 pu voltage reference
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with the parameters from Table 1, stable operation can be
maintained for 1.0 pu power transfer up to almost 0.75 pu grid
impedance (i.e. an SCR of about 1.3) in inverter operation, and to
almost 0.65 pu grid impedance (i.e. an SCR of about 1.5) in
rectifier operation. Indeed, this extended stability range is due to
the voltage controller, ensuring a partial compensation of the
reactive power consumed by the weak grid impedance compared
to the case with unity power factor at the filter capacitors.
However, the VSC cannot fully benefit from the increased static
power transfer capability resulting from the voltage control action
due to the small-signal stability limitations.

3.2 Impact of PLL tuning and impedance compensation
on the small-signal stability limit

Since the small-signal stability limit for Case 1 is equal to the static
power transfer capability limit, the PLL parameters do not have
significant influence on this case when applying the symmetrical
optimum (SO) tuning presented in Appendix 3. Thus, the stability
limitations are mainly caused by the reactive power consumption
of the large grid impedance. However, for Case 2 there is a
significant difference between the small-signal stability limit and
the static stability limit, which results from the interaction between
the ac voltage controller and the PLL.

According to the results presented in [17], it should be expected
that the small-signal stability limit can be extended towards the
static stability limit by slowing down the PLL tuning compared to
the parameters given in Table 1. Although the PLL used in this
study has an additional filter which slightly changes the
characteristics and the tuning approach compared to [17], this
effect is demonstrated by the pole trajectory shown in Fig. 5a. In
this plot, the system is analysed in inverter operation with a power
reference of 1.0 pu and a grid impedance of 0.8 pu. From the
curves in Fig. 4b, it can be seen that the system will experience
small-signal instability with the PLL parameters from Table 1 in
Appendix 1. The trajectory of the critical eigenvalue
when sweeping the low-pass filter crossover frequency of the PLL,
oLp,pLL, While maintaining the tuning criteria given in Appendix 3,
is shown in Fig. 5a. This corresponds to a reduction of the PLL
closed loop bandwidth, and the arrows in the figure indicate how
the critical eigenvalues are initially moving towards the left and
become stable when the PLL bandwidth is reduced. However, the
location of the critical eigenvalues reach a minimum real value
before they start moving towards zero when the PLL becomes
very slow. Even with the PLL parameters corresponding to the
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Stability limits of the investigated system with conventional PLL, as a function of grid impedance (¢4 =80°)
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Fig. 5 Eigenvalue trajectories for Case 2 for different cases of power reference and impedance compensation with PLL tuned according to Appendix 3, when
sweeping oy p,py 1. from 500 to 1 rad/s (direction indicated by arrows for the critical modes), (SCR = 0.8, ¢, = 80°). Black triangles represents unstable conditions

a Operation as inverter with power reference of 1.0 pu and conventional PLL

b Operation as inverter with power reference of 1.0 pu and IC-PLL with 40% impedance compensation
¢ Operation as inverter with power reference of 1.0 pu and IC-PLL with 60% impedance compensation

d Operation as rectifier with power reference of —1.0 pu and conventional PLL

e Operation as rectifier with power reference of —1.0 pu and IC-PLL with 40% impedance compensation
f Operation as rectifier with power reference of —1.0 pu and IC-PLL with 60% impedance compensation

most negative real part of the eigenvalue, the system will still be very
close to the stability limit and will have a relatively poor dynamic
response due to the long settling time of the critical mode.

The effect on the trajectory of the critical eigenvalues from
introducing a virtual impedance compensation of 40% of the grid
impedance in the IC-PLL is shown in Fig. 5b. By comparing the
trajectories in Figs. 5a and b, it can be seen how the virtual
impedance in the IC-PLL is effectively eliminating the instability

y Stability limit: rectifier operation

Maximum power transfer capability [pu]

3 0.5 ,
Grid impedance: Izgl [pu]
a

effect caused by the weak grid and the interaction between the
PLL and the ac voltage controller. Thus, by synchronising to a
virtually stronger point in the grid, the interaction between the ac
voltage controller and the PLL is mitigated. Thus, the eigenvalue
trajectory becomes similar to a case where the PLL is based on
voltage measurements in a stronger grid. This effect is even more
noticeable in Fig. 5S¢ plotted for an impedance compensation ratio
of 60%.

Maximum power transfer capability [pu]

Static stability limit: rectifier operation

m= u = Static stability limit: inverter operation

Small-signal stability limit: rectifier operation

. Small-signal stability limit: inverter operation

0.1 02 03 04 05 06 07 08 09 1
Grid impedance: Izgl [pu)

b

Fig. 6 Stability limits of the investigated system as function of the total grid impedance for increasing levels of impedance compensation (g = 80°)

a Case 1: fixed g-axis current reference equal to 0
b Case 2: ac voltage controller with 1.0 pu voltage reference
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Fig. 7  Stability limits as a function of the impedance compensation level for different grid impedance (¢4 = 80°)

a Case 1: fixed g-axis current reference equal to 0
b Case 2: ac voltage controller with 1.0 pu voltage reference

A similar set of results as in Figs. Sa—c are shown for rectifier
operation with —1.0 pu power reference in Figs. 5d—f. From the
rectifier side stability limits in Fig. 45 it can be seen that the
system will be very close to the static stability limit for a grid
impedance of 0.8 pu. Thus, from Fig. 5d it can be seen that the
system has a very narrow stability range with the conventional
PLL. Fig. 5e shows that introducing a virtual impedance share of
40% in the IC-PLL improves the stability range, but there is still a
range of PLL tunings where the system will reach small-signal
instability. Increasing the impedance compensation share to 60%,
the PLL impact on the system stability due to the weak grid is
almost eliminated and the system can be kept stable with any
bandwidth of the PLL.

3.3 Stability limits with IC-PLL

The impact from grid synchronisation by the IC-PLL on the power
transfer capability is illustrated in Fig. 6. In this figure, similar
curves as shown in Fig. 4 are plotted for increasing levels of
virtual impedance from 0 to 100%, with the share of compensation
increased by 10% for each curve. For simplicity, the phase angle
of the virtual impedance is kept equal to the grid impedance angle.

The curves in Fig. 6a demonstrate a significant increase of the
power transfer capability for Case 1. Thus, it is possible to achieve
1.0 pu power transfer in both directions with 1.0 pu grid impedance
(i.e. an SCR of 1.0). This case is also small-signal stable within the
full range of static power transfer capability with all levels of
virtual impedance in the IC-PLL. This is in agreement with the
findings obtained by trial-and-error simulation for a virtual
flux-based grid synchronisation in [20-22], and indicates that the
quasi-stationary approximation in the IC-PLL implementation does
not significantly affect the small-signal stability.

The impact of the impedance conditioning is less pronounced for
Case 2 as shown in Fig. 6b, even if improvements are still noticeable.
This is because the static power transfer capability limitation of the
system is determined by the 1.0 pu reference value for the ac
voltage control loop, which determines the steady-state capacitor
voltage. Therefore, the impedance compensation cannot influence
the steady-state stability limit for this case. However, increasing
the level of impedance compensation in the IC-PLL is effectively
moving the small-signal stability limit towards the static power
transfer limitation of the system. This occurs inherently when
increasing the virtual impedance without any modification of the
Pl-controller gains of the PLL. Further stability improvements
beyond the static stability limits given in Fig. 6b can only be
achieved by increasing the ac voltage reference, since this will

allow the VSC to supply more reactive power to the grid in a
similar way as for Case 1 with high virtual impedance.

To further illustrate how the impedance conditioning is
influencing the power transfer capability for different values of the
grid impedances, the stability limits are plotted as a function of the
impedance compensation share in Fig. 7. The curves in these plots
are representing a range of grid impedances from 0.1 to 1.0 pu,
with each curve representing a step of 0.1 pu, still assuming an
impedance angle of 80°. The curves in Fig. 7a clearly show how
increasing the virtual impedance can enable a theoretical power
transfer capability of Case 1 exceeding 1.0 pu in both inverter
operation and rectifier operation with a grid impedance of 1.0 pu.
However, the power transfer capability is as expected always
lower for rectifier operation than for inverter operation due to the
voltage drop across the equivalent grid resistance.

For Case 2, the curves in Fig. 7b show how the power transfer
capability is increased almost linearly with the virtual impedance
until an impedance compensation share of about 50% is reached. At
this point, the small-signal stability limit is approaching the static
power transfer capability limit imposed by the ac voltage reference,
as shown in detail for 1.0 pu grid impedance in Fig. 8. Thus, further
increase in the virtual impedance is not helping to increase the power
transfer capability, and the system is not able to achieve 1.0 pu power
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Fig. 8 Stability limitations of Case 2 as a function of the impedance
compensation (SCR= 1, p,=80°)
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transfer in rectifier operation. However, the improvement of the
small-signal stability range demonstrated in Fig. 8 is significant and,
as already mentioned, this is achieved without modifying any other
parameters than the virtual impedance of the IC-PLL and without
any other consequences for the converter operation.

For Case 1, full impedance compensation in a weak grid might
lead to a very high reactive power injection, resulting in higher
voltage and current requirements for the VSC. Thus, the
consequences for the operating conditions should be taken into
account when selecting the virtual impedance. To investigate these
issues, the power transfer capability limit and the corresponding
voltage and current amplitudes at the filter capacitors of the VSC
are plotted in Fig. 9 as a function of the impedance compensation
share for the case of 1.0 pu grid impedance (SRC=1.0) with
@y =280° These curves show that the converter voltage and
currents can increase excessively for more than about 50%
compensation since this implies significant reactive power
injection from the converter. However, for inverter operation of
the VSC, a virtual impedance share in the range of 30-40% of the
equivalent grid impedance is enough to ensure a power transfer
capability of 1.0 pu, with a filter voltage around 1.0 pu and a
current amplitude of about 1.2 pu. Thus, the converter must
be slightly over-rated in current capability to be able to achieve
1.0 pu power transfer.

A higher share of virtual impedance, and a correspondingly higher
injection of reactive power, is required for Case 1 in rectifier
operation to reach 1.0 pu power transfer capability with an SCR of
1.0, due to the effect of the resistive voltage drop across the
equivalent grid resistance. However, when increasing the virtual
impedance towards 70% of the grid impedance, stable operation
can still be ensured with a 50% current over-rating, which results
in about 1.2 pu voltage at the filter capacitor. Although it might
not be realistic to design a VSC for such operating conditions, this
proves that applying the proposed IC-PLL for grid synchronisation
can ensure stability beyond the lower acceptable SCR limits of
about 1.3 found in [17]. From practical considerations, it can be
appropriate to set the virtual impedance equal to the known
minimum impedances in the system, like for instance the
equivalent series impedance of the transformer and the lines in the
radial part of the transmission system.

3.4 Verification of calculated stability limits

The stability limits calculated in the previous sections have been
verified by time-domain simulations in the Matlab/Simulink/
SimPowerSystems environment. For reducing the computational
effort, an average model of the VSC has been preferred for the
simulations, since a switching model will not significantly
influence the results as demonstrated in [17]. A set of simulation
results obtained with 1.0 pu total grid impedance and ¢, =80° are
shown in Fig. 10 for both Case 1 and Case 2, where a
conventional PLL is compared to the IC-PLL with 50%
impedance compensation.

The upper part of Fig. 10a shows a set of simulation results for
Case 1 in inverter operation, when the power reference is
increased in steps from 0 to 1.0 pu, with smaller steps around the
calculated stability limit with the conventional PLL. At simulation
time 1=4.0 s, the power reference is stepped from 0.650 to 0.675
pu, and the dashed curve in the figure clearly shows that instability
is reached at this power level as predicted by the results from
Fig. 4. With the IC-PLL, the system can reach the full 1.0 pu
power transfer, as expected from the curves in Figs. 7a and 9. In
the lower part of Fig. 10a, a similar simulation is repeated for
rectifier operation of the VSC. In this case, the system with the
conventional PLL becomes unstable when the power reference is
stepped from —0.450 to —0.475 pu, corresponding to the stability
limit shown in Fig. 4a, while the system with the IC-PLL is still
stable. However, when the power reference is stepped from
—0.650 to —0.675 pu, also the case with 50% virtual impedance in
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Fig.9 Operating conditions at the stability limits for Case 1 as a function of
the impedance compensation (SCR =1, ¢4, =80°)

the IC-PLL reaches its power transfer capability and the system
collapses, as predicted by the curves in Figs. 7a and 9.

The same type of simulation results is presented for Case 2 in
Fig. 10b. For inverter operation, the upper plot in this figure
shows how the system becomes unstable when the power
reference is stepped from 0.70 to 0.75 pu, matching well with the
small-signal stability limit of about 0.74 that can be found from
the plot in Fig. 4a. It can be noticed from the plot that even if the
limitation for operation at 0.75 pu is given by a small-signal
instability, the oscillations triggered by this instability and the
transient step in the power reference quickly develop into a
non-linear response which causes a voltage collapse of the system.
However, the case with the IC-PLL can reach 1.0 pu power
transfer without experiencing any stability problems. It can also be
noted that the system shows a less oscillatory response with the
IC-PLL, verifying that the critical eigenvalues of the small-signal
model are more damped than with the conventional PLL as
expected from Fig. 5.

The results in the lower part of Fig. 105 show the stability limits
for Case 2 in rectifier operation with the conventional PLL and with
the IC-PLL. From these curves, it can be seen that the system with
the conventional PLL becomes unstable when the power reference
is stepped from —0.6 to —0.65 pu while the case with the IC-PLL
becomes unstable when the power reference is stepped from —0.80
to —0.85 pu. These results are in agreement with the curves in
Figs. 4b, 7b and 8. Thus, the time-domain simulations effectively
verify that the models presented in the Appendix can be used to
accurately assess the stability limits and the power transfer
capability of the investigated system configurations.
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Fig. 10 Time domain simulations for verifying the stability limits calculated from the system model without impedance conditioning and with 50% virtual

impedance

a Case 1: fixed g-axis current reference equal to 0
b Case 2: ac voltage controller with 1.0 pu voltage reference

4 Conclusion

A method for extending the range of power transfer capability in
weak grids with VSCs by introducing a virtual impedance in the
voltage measurements used for grid synchronisation has been
proposed. Such impedance conditioning can be utilised to
synchronise the VSC control system to a virtual remote point in
the grid, where the estimated voltage will be less influenced by
the converter operation. The synchronisation to this virtually
stronger point in the grid will influence the reference frame
orientation of the VSC control system. When using a fixed
g-axis current reference, this can be utilised to inherently provide
load-dependent reactive power support from the VSC with a
similar effect as inserting a virtual series capacitor in a weak
inductive transmission line through the VSC control system.
Thus, the power transfer capability can be correspondingly
increased. If the VSC is operated with an ac voltage control
loop, the static power transfer capability limit is given by the ac
voltage reference, but the small-signal stability limit of the
system with a conventional PLL will be reached at lower power
levels. However, the proposed IC-PLL can increase the
small-signal stability range towards the static power transfer
capability limit and by that increase the practically achievable
steady-state power transfer capability of the system. The stability

limitations have been investigated by using a nonlinear analytical
model for calculating the steady-state power transfer capability
with various combinations of grid impedance values and levels
of virtual impedance. The small-signal stability of the operating
points has also been confirmed, and the validity of the stability
improvements calculated from the analytical models has been
verified by time-domain simulations.
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7 Appendices
7.1 Appendix 1: Non-linear system models

In this section, it is shown how the system from Fig. 1 can be
represented by a non-linear state-space model. This model serves
as a basis for calculating steady-state operating points and the
steady-state stability limits of the system. Moreover, the model can
be linearised into a small-signal state-space model for small-signal
stability studies. The model development is based on [37], but is
adapted to the investigated control system implementations and the
synchronisation method proposed in this paper.

7.2 Electrical system model

The electrical system from Fig. 1 can be expressed by state-space
equations in a synchronously rotating dq reference frame as given
by (2), where all bold symbols represent space vectors written in
the form given by (3)

di w,, w,, LWy ,
d;V = 7"0\/ - 7"0 - jlf +J- Wy |1,
dv wy . w, .
d_;:c_/lcv_; g_]'wgwh'v() (2)
di, w, Wy Te® | . :
T =T Ve Ve | 51w, 1

0 g g o
a7, I,

x=x;+j-x, 3

Considering that the modulation index m used for the pulse-width
modulation operation of the VSC is calculated as indicated in
Fig. 1 from a division of the voltage reference from the control
system by the actual dc voltage v,., the converter output voltage
v, can be assumed to be equal to the reference voltage v, as

expressed by (4). As this effectively decouples the ac side
dynamics from the dc voltage of the VSC, the dynamics of the dc
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side are not included in the modelling

Vepy =M - Vpe —> V,, = vjv (4)

7.3 Model of inner loop controllers

From the control system block diagram in Fig. 1, the voltage
reference for the converter can be expressed by (5). In this
equation, the integrator states of the PI current controllers are
defined by (6), while the stabilising voltage reference from the
active damping algorithm is given by (7). The applied scheme for
active damping is based on the use of low-pass filters to extract
the high frequency oscillating components in the voltage
measurements as defined by (8) [31, 37]

v:v = kpc(izjv - icv) + kic : Y+] : Zl s Wysy icv + Vo — V:;D (5)

(31%’ = ljv - icv (6)

Vip = kap (Va - 69) @)
de

E:wAD'vo_wAD'GD ®)

7.4 Model of outer loop power controller

The active power flow from the VSC into the grid is defined by (9).
A low-pass filter with an internal state variable defined by (10) is
applied on the actual power flow before it is used as the feedback
signal for the outer loop power controller indicated in Fig. 1. The
active, d-axis, current reference resulting from the PI power
controller is given by (11), where the internal state of the
Pl-controller is defined by (12)

P, = Re(vo . ;0) =Vod" io,d + vo.q . iOA,q (9)
dp,,

ar = Wipp Po — Wrpp* Pm (10)

i:v,d = kpp(p* - pm) + kipr (1 1)

dxk, . 1

W =p Pm ( )

7.5 Model of outer loop ac voltage controller

For the case of the ac voltage control, the voltage at the point of
voltage measurements is controlled through the reactive current
reference for the current controllers. Thus, the ac voltage
amplitude feedback signal is defined as given by (13). A low-pass
filter is also assumed to be included in the feedback loop for the
ac voltage controller, and the filtered ac voltage measurement v, ;,
is given by (14). Considering that a negative value of the g-axis
current will inject reactive power into the grid and by that increase
the voltage amplitude, the g-axis current reference produced by the
Pl-controller for the ac voltage is given by (15), where the
integrator state of the PI-controller is defined by (16)

b, = [v,| = Vi +2, (13)

v, ,,

7.6 Model of IC-PLL

The proposed IC-PLL can be modelled in the same way as the
conventional PLL, as further described in [37]. Thus, the states
of the low-pass filters used in the PLL are defined by (17). The
only difference from the conventional PLL is that the voltage
vy, calculated from the virtual impedance according to (1), is
used as an input to the low-pass filter instead of the measured
filter voltage v,

dv
PLL __ =
o —ipprr Ve t+ Wrpprr c Vir 17)

The integrator state of the PI-controller used for tracking the grid
frequency deviation is then defined by (18). Thus, the deviation of
the PLL frequency from the grid frequency can be expressed by
(19), and the phase angle deviation between the grid voltage
vector and the orientation of the PLL can be defined by (20)

d v
% = arctan( PLL’q> (18)

t VPLLd

VPLLg

dwpy, = kyprp - arctan( ) + kiprs - Eprr 19)

VprLd

dd6p,,,

a Swpyy - wy (20)
The resulting PLL phase angle displacement determines the
orientation of the SRF used for the implementation of the VSC
control system. The grid voltage can then be expressed in the
corresponding SRF as given by (21)

v, = P, e 1%, 1)

7.7 Non-linear state-space models

A model of the overall system from Fig. 1 can be achieved by
replacing the algebraic equations from the previous subsections
into the differential equations. This results in a non-linear
state-space model of Case 1 as given by (22). For Case 2, the
system model will have two additional states according to (14) and
(16), while the state equations for the g-axis current and for the
integrator of the g¢-axis current controller will contain
corresponding terms from the voltage control loop as given by
(23). Thus a non-linear state-space model of Case 2 can be
achieved by adding the state 17) and 18) and replacing 4) and 6)
into (22) according to (23) (see equations (22) and (23) at bottom
of the next page)

7.8 Steady-state system models

Steady-state system models for the two investigated cases can be
directly obtained from (22) and (23) by setting all derivative terms
to zero. The models are then reduced to a set of linear and
non-linear algebraic equations that can be solved for the
steady-state operating conditions of the system states as a function
of the reference and input signals. These are the models used to
calculate the steady-state power transfer limitations presented in
Sections 3.1 and 3.3.

a =y Vo~ Opy Yoy (14) 7.9 Appendix 2: Linearised small-signal state-space
models
izv,q = kpv(oz - Oo,m) - kivé:v (15) . . . . .

To verify the small-signal stability of the system in any operating

&, . . 16 point that can be calculated from the non-linear model,

dr e~ Vom (16) small-signal state-space models can be easily obtained by
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linearising (22) and (23). This will result in linearised small-signal
models on the form given by (24). The state vector x and the input
vector u are defined by (25) for Case 1 and by (26) for Case

simulated in Fig. 10

2. These are the models that are used to identify the small-signal Ax=A4-Ax+B-Au 24
stability limits indicated in Fig. 4 and any other operating
condition shown in the subsequent figures. The resulting model _ . . . .
can also be used to analyse the dynamic response of the system X = [Vo,d Vog levd levg Ya Vg loa g Pa Py
for small deviations around any operating point, as for instance the v v e 50 P ]T (25)
dynamics observed when the system is settling around a new PLLd  "PLLg  “PLL PLL - EmTp
ti int f th £ 1 T
operating point as a consequence of the power reference step "= [lwq P 7, wg]
dv d wy, b . dvoq b -
1) dt;’ = whwgvo,q + c_lw,d - cr Lod> 2) dr = o,d + - :ln,q
f f f f
di wyk wb(k +rf) wyk; wyk Wk, k Wk, .k,
3) ond __ Ofap 4 Pl 4 @ofap b*pcpp bTpclip
dr I o I fnd T Ya T l m P
A S f f i i
. —1 VPLL,q kpa kpp
pk; prpiey g €pr + Opk, priic, tan < + - '
VpLLd e
4) dic"»q _ wbkAD voo— “b (kpc + rf) i + wbkic v
- 0,4 cv.g q
dr ly Iy Iy
wyk,p . . —1{YrLLyg Wphpe
+ — % + ki priieya€pr + +0uk, i, gtan + i Ieng
74 VPLLd b
dyve . dy, . .
5) o = leva — by Py + ki — kppp*, 6) o = e + l’:w
di,;, o, wyry @,V c08(80p,;)
7) dot :l_vo,d_l—lod+wbwgloq —
g g g
) di,, o, , wyry . @, sin(86p;;) 22)
=V T Oyl g — g
dr ly Iy
de, Pq
9) T WpVoq — Wyp¢q  10) o @DypVoq — WapPy
dv
1 PLLd . /
) & Wrp priVod — Orpprilviod = OrppriVerrd + @rpprrWeliiog
. _1[VprLLg
+ wLP,PLLki,PLleluquLL + wLP,PLLkp,PLlelo,qtan —
VPLLd
12 dvpyr, _ li
) a @rppriVoq — @rppLLl vloq WrpprLiVeLLg — WLPPLLWghlo g
kol K, pyylyi, tan™" [ ~PE4
— Opp prikiprilyio a€prr — @rp priky pritiio tan
VPLLd
dep; —1YpLL, d66p;, —1YpLL,
13) = =tan ) 14) G = Ok prrtan L) + wpkiprrep
t VPLLd t VPLLd
dp . ) dxk,
15) dlm = _wLP,ppm + wLP,pVO,le,d + wLP,pvn,qlo,q’ 16) W = —DPn + p*
4) dicg _ apkyp v “b (kl’“ try ) P4 wyki v+ wykyp
= 0,9 g q
dt Iy ly ly Iy
] ) _1 [ VveLL, wpk, ko, wpk, k; wpk, .k,
+ wyk; prricva€prr + @k, pr i, gtan ( q) - ;C B+ lp g+ lpc 29
VPLLA ' 'y ' (23)
dy,
q
6) ? = cvq + kpvvom § +£ pv Vo
dan, R d¢ R .
17) C{}lzm = wLP,v Vi,d + v%,q - wLP,vVn,m5 18) ditv = _vo,m + V:
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X = [vo,d Vogq levd levg Ya Yg lod logq Pa Pq
N T
Vprrd VpLLg €PLL 06p11  Pw Ky Vom fv] (26)

”:[‘A}j P wg]T

7.10 Appendix 3: System parameters

This section is included to document the system parameters used for
the presented investigations.

7.11  Parameters used for analysing system
characteristics

The electrical parameters and the controller settings used for all
analysis of system stability limits presented in this paper are listed
in Table 1. The grid impedance and the virtual impedance are not
listed in the table, as their values are varied for the different
investigations.

7.12  PLL tuning

For the eigenvalue analysis in Section 3.2, the PI-controller
parameters of the PLLs have been tuned according to the SO
criterion in a similar way as discussed in [35]. This approach is
based on the PLL open-loop transfer function, Aoy, pr.(s) which
can be approximated by (27) when linearising the inverse tangent
function. Considering the current-dependent impedance terms as a
disturbance to the PLL, the transfer function for the IC-PLL will
be the same as for the conventional PLL.

Table 1 Parameters of investigated system configuration

Parameter Value Parameter Value
rated voltage Vs rus 220 kV rated angular 27 x 50 Hz
frequency wp,

rated power S, 1200 filter inductance /¢ 0.08 pu
MVA

current controller 1.27, filter resistance rys 0.003 pu

gains, ke, kic 14.25

power controller 0.10, filter capacitance cr 0.074 pu

gains, kpp, kip 50,0

power measurement 200 rad/s grid voltage V4 1.0 pu

filter, ,pp

ac voltage controller 0.1, 5.0, PLL low-pass 200 rad/s

gains, ko, ki, filter, o pprL

ac voltage amplitude 10 rad/s PLL gains, kp,pi, Kipo 0.05, 2.53

filter, w.p,

Applying the SO criterion to the transfer function of (27) results in
expressions for the Pl-controller parameters as given by (28) [38].
In this equation, ¢ is the damping factor of the closed-loop transfer
function resulting from (27) and a is a design factor that can be
freely selected to obtain a desired trade-off between damping and
bandwidth of the PLL.

1 WrppLL
k = = —, a=2{+1
PP 0wy - Trp a-w
) (28)
kyp.pLL _ @rppLL

— 2 _
Tipy=a - Typy — kiprp = T 3 72
iPLL @ Wyt Lppry

L+ Tipp-s w 1 For the results in Section 3.2, a is specified to be 3, corresponding to
hovpui(s) = Ky prL Tor-s s 14T -5 a damping factor { of 1 for the PLL closed-loop transfer function.
i,PLL s . . . .

766’ N For this tuning, it can be demonstrated that the effective
PI-controller Filter 27 closed-loop bandwidth of the PLL transfer will be about 0.55
1 times @, p pr;. Thus, the bandwidth of the PLL can be adjusted by

Ty = hanging th th ding filter ti tant 7,
: WLppLL changing the @, p p;, or the corresponding filter time constant T p;;.
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