21,911 research outputs found

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT

    Intelligent monitoring of the health and performance of distribution automation

    Get PDF
    With a move to 'smarter' distribution networks through an increase in distribution automation and active network management, the volume of monitoring data available to engineers also increases. It can be onerous to interpret such data to produce meaningful information about the health and performance of automation and control equipment. Moreover, indicators of incipient failure may have to be tracked over several hours or days. This paper discusses some of the data analysis challenges inherent in assessing the health and performance of distribution automation based on available monitoring data. A rule-based expert system approach is proposed to provide decision support for engineers regarding the condition of these components. Implementation of such a system using a complex event processing system shell, to remove the manual task of tracking alarms over a number of days, is discussed

    Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking

    Full text link
    Montage is a portable software toolkit for constructing custom, science-grade mosaics by composing multiple astronomical images. The mosaics constructed by Montage preserve the astrometry (position) and photometry (intensity) of the sources in the input images. The mosaic to be constructed is specified by the user in terms of a set of parameters, including dataset and wavelength to be used, location and size on the sky, coordinate system and projection, and spatial sampling rate. Many astronomical datasets are massive, and are stored in distributed archives that are, in most cases, remote with respect to the available computational resources. Montage can be run on both single- and multi-processor computers, including clusters and grids. Standard grid tools are used to run Montage in the case where the data or computers used to construct a mosaic are located remotely on the Internet. This paper describes the architecture, algorithms, and usage of Montage as both a software toolkit and as a grid portal. Timing results are provided to show how Montage performance scales with number of processors on a cluster computer. In addition, we compare the performance of two methods of running Montage in parallel on a grid.Comment: 16 pages, 11 figure

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    AMP: A Science-driven Web-based Application for the TeraGrid

    Full text link
    The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.Comment: 7 pages, 2 figures, in Proceedings of the 5th Grid Computing Environments Worksho

    Financing sustainable energy for all: pay-as-you-go vs. traditional solar finance approaches in Kenya

    Get PDF
    This paper focuses on finance for Solar Home Systems (SHSs) in Kenya and asks to what extent emerging new finance approaches are likely to address the shortcomings of past approaches. Drawing on the STEPS Pathways Approach we adopt a framing that understands finance within a broader socio-technical context as a necessary but not sufficient component of achieving alternative pathways to sustainable energy access. The paper contributes in four ways. Firstly, it presents a comprehensive overview of past and new emerging approaches to financing SHSs in Kenya and their relative strengths and weaknesses. Secondly, it represents one of the first attempts in the literature to analyse the potential of new, real time monitoring technologies and pay as you go finance models to overcome the barriers faced by conventional consumer finance models for off-grid renewable energy technologies (RETs). Thirdly, by applying for the first time we are aware of a socio-technical approach, via the application of Strategic Niche Management (SNM) theory, to analyse the finance of RETs in developing countries, the analysis considers finance in the context of the social practices poor people seek to fulfil via access to the energy services that off-grid RETs provide, and the ways in which people previously paid for these services (e.g. via kerosene for lighting). This also situates the analysis within the understanding of SHSs as a niche that has to compete with the established regime of energy service provision and its attendant social and political institutional support. The paper therefore also contributes to the small but expanding body of literature that seeks to operationalise socio-technical transitions thinking and SNM within a developing country context

    C2MS: Dynamic Monitoring and Management of Cloud Infrastructures

    Full text link
    Server clustering is a common design principle employed by many organisations who require high availability, scalability and easier management of their infrastructure. Servers are typically clustered according to the service they provide whether it be the application(s) installed, the role of the server or server accessibility for example. In order to optimize performance, manage load and maintain availability, servers may migrate from one cluster group to another making it difficult for server monitoring tools to continuously monitor these dynamically changing groups. Server monitoring tools are usually statically configured and with any change of group membership requires manual reconfiguration; an unreasonable task to undertake on large-scale cloud infrastructures. In this paper we present the Cloudlet Control and Management System (C2MS); a system for monitoring and controlling dynamic groups of physical or virtual servers within cloud infrastructures. The C2MS extends Ganglia - an open source scalable system performance monitoring tool - by allowing system administrators to define, monitor and modify server groups without the need for server reconfiguration. In turn administrators can easily monitor group and individual server metrics on large-scale dynamic cloud infrastructures where roles of servers may change frequently. Furthermore, we complement group monitoring with a control element allowing administrator-specified actions to be performed over servers within service groups as well as introduce further customized monitoring metrics. This paper outlines the design, implementation and evaluation of the C2MS.Comment: Proceedings of the The 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013), 8 page

    Beyond technology and finance: pay-as-you-go sustainable energy access and theories of social change

    Get PDF
    Two-thirds of people in sub-Saharan Africa lack access to electricity, a precursor of poverty reduction and development. The international community has ambitious commitments in this regard, e.g. the UN's Sustainable Energy for All by 2030. But scholarship has not kept up with policy ambitions. This paper operationalises a sociotechnical transitions perspective to analyse for the first time the potential of new, mobileenabled, pay-as-you-go approaches to financing sustainable energy access, focussing on a case study of pay-as-you-go approaches to financing solar home systems in Kenya. The analysis calls into question the adequacy of the dominant, two-dimensional treatment of sustainable energy access in the literature as a purely financial/technology, economics/ engineering problem (which ignores sociocultural and political considerations) and demonstrates the value of a new research agenda that explicitly attends to theories of social change – even when, as in this paper, the focus is purely on finance. The paper demonstrates that sociocultural considerations cut across the literature's traditional two-dimensional analytic categories (technology and finance) and are material to the likely success of any technological or financial intervention. It also demonstrates that the alignment of new payas- you-go finance approaches with existing sociocultural practices of paying for energy can explain their early success and likely longevity relative to traditional finance approaches
    • 

    corecore