6,810 research outputs found

    Ready to Roll?: Overview of Challenges and Opportunities

    Get PDF
    Alternative Fuel Vehicles (AFVs) use combinations of vehicle fuels and technologies to reduce the use of petroleum in on-road vehicles. These include low-carbon fuels (sometimes blended with petroleum), electricity, and hybrid technologies combining internal combustion engines with electric motors. DVRPC's Ready to Roll? Report provides an overview for policymakers and citizens in the Greater Philadelphia region about the challenges and opportunities for expanded use of alternative fuel vehicles. The AFVs covered in this report include those most widely available today or likely to become available in the next 10 to 20 years

    Ready To Roll: Southeastern Pennsylvania's Regional Electric Vehicle Action Plan

    Get PDF
    On-road internal combustion engine (ICE) vehicles are responsible for nearly one-third of energy use and one-quarter of greenhouse gas (GHG) emissions in southeastern Pennsylvania.1 Electric vehicles (EVs), including plug-in hybrid electric vehicles (PHEVs) and all-electric vehicles (AEVs), present an opportunity to serve a significant portion of the region's mobility needs while simultaneously reducing energy use, petroleum dependence, fueling costs, and GHG emissions. As a national leader in EV readiness, the region can serve as an example for other efforts around the country."Ready to Roll! Southeastern Pennsylvania's Regional EV Action Plan (Ready to Roll!)" is a comprehensive, regionally coordinated approach to introducing EVs and electric vehicle supply equipment (EVSE) into the five counties of southeastern Pennsylvania (Bucks, Chester, Delaware, Montgomery, and Philadelphia). This plan is the product of a partnership between the Delaware Valley Regional Planning Commission (DVRPC), the City of Philadelphia, PECO Energy Company (PECO; the region's electricity provider), and Greater Philadelphia Clean Cities (GPCC). Additionally, ICF International provided assistance to DVRPC with the preparation of this plan. The plan incorporates feedback from key regional stakeholders, national best practices, and research to assess the southeastern Pennsylvania EV market, identify current market barriers, and develop strategies to facilitate vehicle and infrastructure deployment

    Carbon Free Boston: Transportation Technical Report

    Get PDF
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical ReportOVERVIEW: Transportation connects Boston’s workers, residents and tourists to their livelihoods, health care, education, recreation, culture, and other aspects of life quality. In cities, transit access is a critical factor determining upward mobility. Yet many urban transportation systems, including Boston’s, underserve some populations along one or more of those dimensions. Boston has the opportunity and means to expand mobility access to all residents, and at the same time reduce GHG emissions from transportation. This requires the transformation of the automobile-centric system that is fueled predominantly by gasoline and diesel fuel. The near elimination of fossil fuels—combined with more transit, walking, and biking—will curtail air pollution and crashes, and dramatically reduce the public health impact of transportation. The City embarks on this transition from a position of strength. Boston is consistently ranked as one of the most walkable and bikeable cities in the nation, and one in three commuters already take public transportation. There are three general strategies to reaching a carbon-neutral transportation system: • Shift trips out of automobiles to transit, biking, and walking;1 • Reduce automobile trips via land use planning that encourages denser development and affordable housing in transit-rich neighborhoods; • Shift most automobiles, trucks, buses, and trains to zero-GHG electricity. Even with Boston’s strong transit foundation, a carbon-neutral transportation system requires a wholesale change in Boston’s transportation culture. Success depends on the intelligent adoption of new technologies, influencing behavior with strong, equitable, and clearly articulated planning and investment, and effective collaboration with state and regional partners.Published versio

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    Charging infrastructure for commercial electric vehicles: Challenges and future works

    Get PDF
    The journey towards transportation electrification started with small electric vehicles (i.e., electric cars), which have enjoyed an increasing level of global interest in recent years. Electrification of commercial vehicles (e.g., trucks) seems to be a natural progression of this journey, and many commercial vehicle manufacturers have shifted their focus on medium- and heavy-duty vehicle electrification over the last few years. In this paper, we present a comprehensive review and analysis of the existing works presented in the literature on commercial vehicle charging. The paper starts with a brief discussion on the significance of commercial vehicle electrification, especially heavy- and medium-duty vehicles. The paper then reviews two major charging strategies for commercial vehicles, namely the return-to-base model and the on route charging model. Research challenges related to the return-to-base model are then analysed in detail. Next, different methods to charge commercial vehicles on route during their driving cycles are summarized. The paper then analyzes the challenging issues related to charging commercial vehicles at public charging stations. Future works relevant to these challenges are highlighted. Finally, the possibility of accommodating vehicle to grid technology for commercial vehicles is discussed

    Using Multi-Agent Transport Simulations to Assess the Impact of EV Charging Infrastructure Deployment

    Get PDF
    Over the last two decades, electrification has gained importance as a means to decarbonise the transport sector. As the number of Electric Vehicles (EVs)increases, it is important to consider broader system aspects as well, especially when deciding the type, coverage, size and location of the charging infrastructure required. In this article, a Multi-Agent model depicting long distance transport in Sweden is proposed, allowing to simulate different scenarios and enabling a more detailed analysis of the interaction between these vehicles and the charging infrastructure
    • …
    corecore