8,984 research outputs found

    KBGIS-2: A knowledge-based geographic information system

    Get PDF
    The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2

    Compressed Representations of Conjunctive Query Results

    Full text link
    Relational queries, and in particular join queries, often generate large output results when executed over a huge dataset. In such cases, it is often infeasible to store the whole materialized output if we plan to reuse it further down a data processing pipeline. Motivated by this problem, we study the construction of space-efficient compressed representations of the output of conjunctive queries, with the goal of supporting the efficient access of the intermediate compressed result for a given access pattern. In particular, we initiate the study of an important tradeoff: minimizing the space necessary to store the compressed result, versus minimizing the answer time and delay for an access request over the result. Our main contribution is a novel parameterized data structure, which can be tuned to trade off space for answer time. The tradeoff allows us to control the space requirement of the data structure precisely, and depends both on the structure of the query and the access pattern. We show how we can use the data structure in conjunction with query decomposition techniques, in order to efficiently represent the outputs for several classes of conjunctive queries.Comment: To appear in PODS'18; 35 pages; comments welcom

    Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Get PDF
    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined

    Fast Search Processing Over Encrypted Relational Data Using K-Nearest Neighbour Algorithm

    Get PDF
    Data mining has been used in real time application in a number of areas such as for example financial, telecommunication, biological, and among government agencies and several application handle very sensitive data. So these data remains secure and private.Data encryption is a very strong option to secure the data in databases from unauthorized access and intruder.The previous privacy preserving classification techniques are not feasible for encrypted data of database.In this paper, our proposed method provides privacy-preserving classifier for encrypted data of relational databasesand achieves the better performance for extracting information from encrypted data of relational databases

    EntiTables: Smart Assistance for Entity-Focused Tables

    Full text link
    Tables are among the most powerful and practical tools for organizing and working with data. Our motivation is to equip spreadsheet programs with smart assistance capabilities. We concentrate on one particular family of tables, namely, tables with an entity focus. We introduce and focus on two specific tasks: populating rows with additional instances (entities) and populating columns with new headings. We develop generative probabilistic models for both tasks. For estimating the components of these models, we consider a knowledge base as well as a large table corpus. Our experimental evaluation simulates the various stages of the user entering content into an actual table. A detailed analysis of the results shows that the models' components are complimentary and that our methods outperform existing approaches from the literature.Comment: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '17), 201
    corecore