312 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    MIMO-OFDM Based Energy Harvesting Cooperative Communications Using Coalitional Game Algorithm

    Get PDF
    This document is the Accepted Manuscript version. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we consider the problem of cooperative communication between relays and base station in an advanced MIMO-OFDM framework, under the assumption that the relays are supplied by electric power drawn from energy harvesting (EH) sources. In particular, we focus on the relay selection, with the goal to guarantee the required performance in terms of capacity. In order to maximize the data throughput under the EH constraint, we model the transmission scheme as a non-transferable coalition formation game, with characteristic function based on an approximated capacity expression. Then, we introduce a powerful mathematical tool inherent to coalitional game theory, namely: the Shapley value (Sv) to provide a reliable solution concept to the game. The selected relays will form a virtual dynamically-configuredMIMO network that is able to transmit data to destination using efficient space-time coding techniques. Numerical results, obtained by simulating the EH-powered cooperativeMIMO-OFDMtransmission with Algebraic Space-Time Coding (ASTC), prove that the proposed coalitional game-based relay selection allows to achieve performance very close to that obtained by the same system operated by guaranteed power supply. The proposed methodology is finally compared with some recent related state-of-the-art techniques showing clear advantages in terms of link performance and goodput.Peer reviewe

    Cooperative Relaying and Resource Allocation in Future-Generation Cellular Networks

    Get PDF
    Driven by the significant consumer demand for reliable and high data rate communications, the future-generation cellular systems are expected to employ cutting-edge techniques to improve the service provisioning at substantially reduced costs. Cooperative relaying is one of the primary techniques due to its ability to improve the spectrum utilization by taking advantage of the broadcast nature of wireless signals. This dissertation studies the physical layer cooperative relaying technique and resource allocation schemes in the cooperative cellular networks to improve the spectrum and energy efficiency from the perspectives of downlink transmission, uplink transmission and device-to-device transmission, respectively. For the downlink transmission, we consider an LTE-Advanced cooperative cellular network with the deployment of Type II in-band decode-and-forward relay stations (RSs) to enhance the cell-edge throughput and to extend the coverage area. This type of relays can better exploit the broadcast nature of wireless signals while improving the utilization of existing allocated spectral resources. For such a network, we propose joint orthogonal frequency division multiplexing (OFDM) subcarrier and power allocation schemes to optimize the downlink multi-user transmission efficiency. Firstly, an optimal power dividing method between eNB and RS is proposed to maximize the achievable rate on each subcarrier. Based on this result, we show that the optimal joint resource allocation scheme for maximizing the overall throughput is to allocate each subcarrier to the user with the best channel quality and to distribute power in a water-filling manner. Since the users' Quality of Service (QoS) provision is one of the major design objectives in cellular networks, we further formulate a lexicographical optimization problem to maximize the minimum rate of all users while improving the overall throughput. A sufficient condition for optimality is derived. Due to the complexity of searching for the optimal solution, we then propose an efficient, low-complexity suboptimal joint resource allocation algorithm, which outperforms the existing suboptimal algorithms that simplify the joint design into separate allocation. Both theoretical and numerical analyses demonstrate that our proposed scheme can drastically improve the fairness as well as the overall throughput. As the physical layer uplink transmission technology for LTE-Advanced cellular network is based on single carrier frequency division multiple access (SC-FDMA) with frequency domain equalization (FDE), this dissertation further studies the uplink achievable rate and power allocation to improve the uplink spectrum efficiency in the cellular network. Different from the downlink OFDM system, signals on all subcarriers in the SC-FDMA system are transmitted sequentially rather than in parallel, thus the user's achievable rate is not simply the summation of the rates on all allocated subcarriers. Moreover, each user equipment (UE) has its own transmission power constraint instead of a total power constraint at the base station in the downlink case. Therefore, the uplink resource allocation problem in the LTE-Advanced system is more challenging. To this end, we first derive the achievable rates of the SC-FDMA system with two commonly-used FDE techniques, zero-forcing (ZF) equalization and minimum mean square error (MMSE) equalization, based on the joint superposition coding for cooperative relaying. We then propose optimal power allocation schemes among subcarriers at both UE and RS to maximize the overall throughput of the system. Theoretical analysis and numerical results are provided to demonstrate a significant gain in the system throughput by our proposed power allocation schemes. Besides the physical layer technology, the trend of improving energy efficiency in future cellular networks also motivates the network operators to continuously bring improvements in the entire network infrastructure. Such techniques include efficient base station (BS) redesign, opportunistic transmission such as device-to-device and cognitive radio communications. In the third part of this dissertation, we explore the potentials of employing cooperative relaying in a green device-to-device communication underlaying cellular network to improve the energy efficiency and spectrum utilization of the system. As the green base station is powered by sustainable energy, the design objective is to enhance both sustainability and efficiency of the device-to-device communication. Specifically, we first propose optimal power adaptation schemes to maximize the network spectrum efficiency under two practical power constraints. We then take the dynamics of the charging and discharging processes of the energy buffer at the BS into consideration to ensure the network sustainability. To this end, the energy buffer is modeled as a G/D/1 queue where the input energy has a general distribution. Power allocation schemes are proposed based on the statistics of the energy buffer to further enhance the network efficiency and sustainability. Theoretical analysis and numerical results are presented to demonstrate that our proposed power allocation schemes can improve the network throughput while maintaining the network sustainability at a certain level. Our analyses developed in this dissertation indicate that the cooperative transmission based on cooperative relaying can significantly improve the spectrum efficiency and energy efficiency of the cellular network for downlink transmission, uplink transmission and device-to-device communication. Our proposed cooperative relaying technique and resource allocation schemes can provide efficient solutions to practical design and optimization of future-generation cellular networks

    Extending Wireless Powered Communication Networks for Future Internet of Things

    Get PDF
    Energy limitation has always been a major concern for long-term operation of wireless networks. With today's exponential growth of wireless technologies and the rapid movement towards the so-called Internet of Things (IoT), the need for a reliable energy supply is more tangible than ever. Recently, energy harvesting has gained considerable attention in research communities as a sustainable solution for prolonging the lifetime of wireless networks. Beside conventional energy harvesting sources such as solar, wind, vibration, etc. harvesting energy from radio frequency (RF) signals has drawn significant research interest in recent years as a promising way to overcome the energy bottleneck. Lately, the integration of RF energy transfer with wireless communication networks has led to the emergence of an interesting research area, namely, wireless powered communication network (WPCN), where network users are powered by a hybrid access point (HAP) which transfers wireless energy to the users in addition to serving the functionalities of a conventional access point. The primary aim of this thesis is to extend the baseline model of WPCN to a dual-hop WPCN (DH-WPCN) in which a number of energy-limited relays are in charge of assisting the information exchange between energy-stable users and the HAP. Unlike most of the existing research in this area which has merely focused on designing methods and protocols for uplink communication, we study both uplink and downlink information transmission in the DH-WPCN. We investigate sum-throughput maximization problems in both directions and propose algorithms for optimizing the values of the related parameters. We also tackle the doubly near-far problem which occurs due to unequal distance of the relays from the HAP by proposing a fairness enhancement algorithm which guarantees throughput fairness among all users

    Dependable Information Exchange for the Next Generation Mobile Cyber-Physical Systems

    Get PDF
    Mobile cyber-physical systems (M-CPSs) are envisaged as an integral part of our digital future. Dependability of M-CPSs is subject to timely, reliable, and secure information exchange among M-CPS entities. Information exchange provisioning in such systems is conventionally built with sole reliance on wireless connectivity. The conventional approaches, however, fail to efficiently exploit dynamism and heterogeneity, and to incorporate computing/cooperation as alternative system-wide tools for information exchange. To address these issues, we approach M-CPSs dependability from the information exchange perspective and define dependable-exchange-of-information (DeX) indicating collective M-CPS capability of information exchange provisioning. We then propose a cloud-based architecture for DeX provisioning as a service to facilitate versatile development of dependable M-CPSs
    • …
    corecore