165,332 research outputs found

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Challenges and complexities in application of LCA approaches in the case of ICT for a sustainable future

    Get PDF
    In this work, three of many ICT-specific challenges of LCA are discussed. First, the inconsistency versus uncertainty is reviewed with regard to the meta-technological nature of ICT. As an example, the semiconductor technologies are used to highlight the complexities especially with respect to energy and water consumption. The need for specific representations and metric to separately assess products and technologies is discussed. It is highlighted that applying product-oriented approaches would result in abandoning or disfavoring of new technologies that could otherwise help toward a better world. Second, several believed-untouchable hot spots are highlighted to emphasize on their importance and footprint. The list includes, but not limited to, i) User Computer-Interfaces (UCIs), especially screens and displays, ii) Network-Computer Interlaces (NCIs), such as electronic and optical ports, and iii) electricity power interfaces. In addition, considering cross-regional social and economic impacts, and also taking into account the marketing nature of the need for many ICT's product and services in both forms of hardware and software, the complexity of End of Life (EoL) stage of ICT products, technologies, and services is explored. Finally, the impact of smart management and intelligence, and in general software, in ICT solutions and products is highlighted. In particular, it is observed that, even using the same technology, the significance of software could be highly variable depending on the level of intelligence and awareness deployed. With examples from an interconnected network of data centers managed using Dynamic Voltage and Frequency Scaling (DVFS) technology and smart cooling systems, it is shown that the unadjusted assessments could be highly uncertain, and even inconsistent, in calculating the management component's significance on the ICT impacts.Comment: 10 pages. Preprint/Accepted of a paper submitted to the ICT4S Conferenc
    • …
    corecore