119,315 research outputs found
Ecology of Sydney plant species : part 10, Monocotyledon families Lemnaceae to Zosteraceae
Ecological data in tabular form are provided on 668 plant species of the families Lemnaceae to Zosteraceae, 505 native and 163 exotics, occurring in the Sydney region, defined by the Central Coast and Central Tablelands botanical subdivisions of New South Wales (approximately bounded by Lake Macquarie, Orange, Crookwell and Nowra). Relevant Local Government Areas are Auburn, Ashfield, Bankstown, Bathurst, Baulkham Hills, Blacktown, Blayney, Blue Mountains, Botany, Burwood, Cabonne, Camden, Campbelltown, Canada Bay, Canterbury, Cessnock, Crookwell, Evans, Fairfield, Greater Lithgow, Gosford, Hawkesbury, Holroyd, Hornsby, Hunters Hill, Hurstville, Kiama, Kogarah, Ku-ring-gai, Lake Macquarie, Lane Cove, Leichhardt, Liverpool, Manly, Marrickville, Mosman, Mulwaree, North Sydney, Oberon, Orange, Parramatta, Penrith, Pittwater, Randwick, Rockdale, Ryde, Rylstone, Shellharbour, Shoalhaven, Singleton, South Sydney, Strathfield, Sutherland, Sydney City, Warringah, Waverley, Willoughby, Wingecarribee, Wollondilly, Wollongong, Woollahra and Wyong. The study area falls within the Sydney Basin IBRA Bioregion.
Families are: Lemnaceae, Liliaceae, Lomandraceae, Luzuriagaceae, Najadaceae, Orchidaceae, Philydraceae, Phormiaceae, Poaceae, Pontederiaceae, Posidoniaceae, Potamogetonaceae, Restionaceae, Ripogonaceae, Smilacaceae, Sparganiaceae, Thismiaceae, Typhaceae, Uvulariaceae, Xanthorrhoeaceae, Xyridaceae, Zingiberaceae, Zosteraceae.
Data are derived from herbarium collections, literature and field observations. It is hoped that the many, often alarming gaps in the information available will stimulate much-needed research into the ecology of more of the species. Information is provided so far as available to us for each plant species in the following categories:
Life History: Growth form, vegetative spread, longevity, primary juvenile period (time from germination to fruiting), reproduction, flowering and fruiting times, fruit/seed type, dispersal, establishment and growth, fire response, interaction with other organisms.
Distribution: Status/origin (native/naturalised), botanical subregions, distribution in Sydney area, selected locations.
Habitat: Habitat, altitude, annual rainfall, typical local abundance, vegetation, substrate, exposure.
Conservation: Conservation status
An Ecological Study of Timberline and Alpine Areas, Mount Lincoln, Park County, Colorado
During the short alpine growing season of 1945 the authors had the opportunity of studying conditions and biota on Mount Lincoln, Park County, Colorado, in an attempt to evaluate the ecological conditions and animal communities of the area. Of the large amount of taxonomic and ecological zoology published on the state, most has been in the field of autecology, and, except in the province of aquatic studies, little has appeared bearing on synecological relations, especially among invertebrates. The marked differences between the physiography, climatology, and biology of timberline, alpine, and other stations seemed to offer a field well worthy of investigation. Since the work was done, other factors have been introduced which have greatly altered the nearly primitive conditions encountered at the time of the investigation. One of the areas has been entirely destroyed by the formation of a water storage lake, and others have been affected through heavy summer grazing by bands of sheep.
The material published on the Mount Lincoln area is very limited. Cary (1911) was concerned with similar areas in other parts of the state, but apparently he did not work around the mountains at the head of the South Platte. The most detailed paper on the region is that of Patton and his collaborators (1912) which covers the physiography very completely. There are scattered references to the animal life of the vicinity in Coues (1874), Sclater (1912), Warren (1942), and elsewhere. The most complete published reports on the animal life of the region are those of Brewer (1871) and Allen (1872, 1876a, 1876b); the first of Allen\u27s papers is the source of most of Coues\u27 references to the Mount Lincoln avifauna. None of these papers deals with the invertebrates, save for comments by Brewer on the relative abundance of certain orders of insects
Effects of post-fire logging on forest surface air temperatures in the Siskiyou Mountains, Oregon, USA
Following stand-replacing wildfire, post-fire (salvage) logging of fire-killed trees is a widely implemented management practice in many forest types. A common hypothesis is that removal of fire-killed trees increases surface temperatures due to loss of shade and increased solar radiation, thereby influencing vegetation establishment and possibly stand development. Six years after a wildfire in a Mediterranean-climate mixed-conifer forest in southwest Oregon, USA, we measured the effects of post-fire logging (> 90 per cent dead tree (snag) removal) on growing season surface air temperatures. Compared with unlogged severely burned forest, post-fire logging did not lead to increased maximum daily surface air temperature. However, dead tree removal was associated with lower nightly minimum temperatures (similar to 1 degrees C) and earlier daytime heating, leading to a 1-2 degrees C difference during the warming portion of the day. Effects varied predictably by aspect. The patterns reported here represent a similar but muted pattern as previously reported for microclimatic changes following clear-cutting of green trees. Effects of microsites such as tree bases on fine-scale temperature regimes require further investigation
The effect of elevation on species richness in tropical forests depends on the considered lifeform: results from an East African mountain forest
Elevation gradients in tropical forests have been studied but the analysis of patterns displayed by species richness and elevation have received little attention. We examined whether the effect of elevation on species richness varies according to forest lifeforms and the main plant families in the Kahuzi-Biega National Park, within the Albertine Rift. We established 20 1-ha plots from 810 to 2760 m asl. Inside each plot, species inventories were carried out within three nested sub-plots: the tree lifeform (i.e. species with a dbh ≥ 10 cm), the shrub lifeform (dbh < 10 cm) and the herbaceous lifeform. For trees and shrubs (woody lifeforms) abundance data (i.e. number of individuals per species) were taken into account whereas the herbaceous lifeform was surveyed using presence–absence data. We plotted species counts vs elevation for each of the ten richest families per forest lifeform and resorted to Poisson regression models to assess the statistical meanings of the displayed results. Hurdle models (truncated Poisson regression) were used to account for overdispersion in the data. For woody lifeforms, we observed a monotonic decrease of species richness, while species richness appeared to be increasing with elevation for the herbaceous lifeform. Woody lifeforms displayed various vegetation patterns according to the considered families, therefore, contrasting with the general pattern observed in the herbaceous lifeform. These findings suggest the existence of specific eco-physiological properties pertaining to each forest lifeform and the existence of family-specific elevation patterns of species richness
Ecology and Host Associations of \u3ci\u3eHistiogaster Arborsignis\u3c/i\u3e (Acari: Acaridae) in the Great Lakes Region, Particularly in the Huron Mountains of Northern Michigan
Histiogaster arborsignis is recorded from subcortical habitats and fungal fruiting bodies in the Huron Mountains of northern Michigan. Deutonymphs were collected from 15 species of Coleoptera, Hymenoptera and Diptera. Additional host and locality records for this species are provided from other areas in the Great Lakes region
Studies of Birds and Mammals in the Baird and Schwatka Mountains, Alaska
In 1963 a joint University of Alaska-Smithsonian Institution crew worked at
five locations in the Baird and Schwatka mountains in northwestern Alaska, conducting an ecological reconnaissance and faunal and floral inventory. Standard methods of observation and collection were used. Camps in the Kobuk drainage were located in the Redstone River valley and at Walker Lake, both on the margin of the taiga. The Noatak valley was represented by one camp each in the lower, middle, and upper reaches of the river, all in tundra. A summary of pre-1963 ornithological work in the region is presented. Significant records of distribution and/or breeding were obtained for the following birds: Podiceps grisegena,
Anas platyrhynchos, Aythya valisineria, Histrionicus histrionicus, Melanitta perspicillata, Mergus merganser, Aphrizia virgata, Bartramia longicauda, Actitis macularia, Tringa flavipes, Phalaropus fuficarius, Lobipes lobatus, Larus hyperboreus,Xema sabini, Sayornis saya, Nuttalornis borealis, Eremophilia alpestris, Tachycineta thalassina, Riparia riparia, Petrochelidon pyrrhonota, Phylloscopus borealis, Dendroica petechia, Leucosticte tephrocotis, Zonotrichia atricapilla, Calcarius pictus; and the mammal, Spermophilus undulatus. Good series of Cletihrionomys rutilius (350) and Microtus miurus (147) have been deposited in the University of Alaska Museum. Severe doubt has been raised
regarding the validity of the standard three-night trap grid for population estimation under wet conditions in arctic areas
TGLE Vol 50 nos. 3 & 4 full issue
The Great Lakes Entomologist Volume 50 Numbers 3 & 4 Fall/Winter full issue
Increasing the resilience of the Australian alpine flora to climate change
The alpine region around Australia’s highest mountain, Mt Kosciuszko, is part of one of the three most at risk ecosystems in Australia from climate change. With higher temperatures and decreased precipitation, snow cover is already declining with even greater reductions predicted in the short to medium term (2020 to 2050). Consequently the distribution of many native plants and animals may contract, while the distribution of weeds and feral animals may expand. Wildfires in the region are also likely to be more frequent and intense. To contribute to our understanding of how changes in the environment alter plant composition and ecological process, we conducted a series of functional trait analyses of existing composition datasets. We collected trait data in the field for 220 species including canopy height, leaf area, leaf dry matter content and specific leaf area (SLA). Variation in traits among the alpine flora was not related to species distributional ranges. Traits were strongly associated with growth forms, with shrubs often taller than herbs and graminoids, but often had small, tough, long-lasting leaves. Species traits were combined with relative cover values to calculate community trait weighted means, a commonly used measure of functional diversity. Functional diversity varied with altitude/duration of snow cover. For example, shrubs which are taller with small tough leaves dominated lower altitude summits, while at higher altitude summits, large, soft leaved herbs and graminoids dominated. Late lying snowpatches areas with short growing seasons were dominated by low growing herbs and graminoids with small leaves while areas with longer growing seasons were dominated by herbs and graminoids that were taller and had larger leaves. Recovery from fire differed among plant communities. The composition and functional diversity of recovering tall alpine herbfield is trending towards that of equivalent unburnt sites, while burnt windswept feldmark was colonised by graminoids and herbs that are often found in tall alpine herbfield species, with limited shrub recovery in the first nine years post fire. Grazing by feral hares had no effect on composition or functional diversity, while vegetation recovering from cattle grazing showed clear changes in composition and functional diversity even 43 years later. Prioritising management for this high value conservation region, therefore, involves enhancing resilience by minimising existing threats, particularly those from fire, weeds and hard-hooved grazing animals which will be exacerbate by climate change.Please cite as: Pickering, C, & Venn, S, 2013 Increasing the resilience of the Australian flora to climate change and associated threats: a plant functional traits approach National Climate Change Adaptation Research Facility, Gold Coast, pp. 94 Abstract The alpine region around Australia’s highest mountain, Mt Kosciuszko, is part of one of the three most at risk ecosystems in Australia from climate change. With higher temperatures and decreased precipitation, snow cover is already declining with even greater reductions predicted in the short to medium term (2020 to 2050). Consequently the distribution of many native plants and animals may contract, while the distribution of weeds and feral animals may expand. Wildfires in the region are also likely to be more frequent and intense. To contribute to our understanding of how changes in the environment alter plant composition and ecological process, we conducted a series of functional trait analyses of existing composition datasets. We collected trait data in the field for 220 species including canopy height, leaf area, leaf dry matter content and specific leaf area (SLA). Variation in traits among the alpine flora was not related to species distributional ranges. Traits were strongly associated with growth forms, with shrubs often taller than herbs and graminoids, but often had small, tough, long-lasting leaves. Species traits were combined with relative cover values to calculate community trait weighted means, a commonly used measure of functional diversity. Functional diversity varied with altitude/duration of snow cover. For example, shrubs which are taller with small tough leaves dominated lower altitude summits, while at higher altitude summits, large, soft leaved herbs and graminoids dominated. Late lying snowpatches areas with short growing seasons were dominated by low growing herbs and graminoids with small leaves while areas with longer growing seasons were dominated by herbs and graminoids that were taller and had larger leaves. Recovery from fire differed among plant communities. The composition and functional diversity of recovering tall alpine herbfield is trending towards that of equivalent unburnt sites, while burnt windswept feldmark was colonised by graminoids and herbs that are often found in tall alpine herbfield species, with limited shrub recovery in the first nine years post fire. Grazing by feral hares had no effect on composition or functional diversity, while vegetation recovering from cattle grazing showed clear changes in composition and functional diversity even 43 years later. Prioritising management for this high value conservation region, therefore, involves enhancing resilience by minimising existing threats, particularly those from fire, weeds and hard-hooved grazing animals which will be exacerbate by climate change
Recommended from our members
Eurycea wilderae
Number of Pages: 4Integrative BiologyGeological Science
EFFECTS OF LAND COVER, WATER REDISTRIBUTION, AND TEMPERATURE ON ECOSYSTEM PROCESSES IN THE SOUTH PLATTE BASIN
Over one‐third of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetation‐related hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (−2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basin‐wide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basin‐wide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of \u3c500 mm on the plains below 1800 m is far less than potential evapotranspiration of 1000–1500 mm and is insufficient for optimum plant productivity. The changes in water flux and photosynthesis from conversion of steppe to cropland are the result of redistribution of snowmelt water from the mountains and groundwater pumping through irrigation projects
- …
