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ABSTRACT 
Following stand-replacing wildfire, post-fire (salvage) logging of fire-killed trees is a widely 

implemented management practice in many forest types.  A common hypothesis is that removal 

of fire-killed trees increases surface temperatures due to loss of shade and increased solar 

radiation, thereby influencing vegetation establishment and possibly stand development.  Six 

years after a wildfire in a Mediterranean-climate mixed-conifer forest in southwest Oregon, 

USA, we measured the effects of post-fire logging (>90% dead tree [snag] removal) on growing 

season surface air temperatures.  Compared with unlogged severely burned forest, post-fire 

logging did not lead to increased maximum daily surface air temperature.  However, dead tree 

removal was associated with lower nightly minimum temperatures (~1°C) and earlier daytime 

heating, leading to a 1-2°C difference during the warming portion of the day.  Effects varied 

predictably by aspect. The patterns reported here represent a similar but muted pattern as 

previously reported for microclimatic changes following clearcutting of green trees.  Effects of 

microsites such as tree bases on fine-scale temperature regimes require further investigation. 
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INTRODUCTION 

Globally, fire management and post-fire rehabilitation are core issues for forestland 

management.  Following high-severity (stand-replacement) fire, the logging of fire-killed trees 

(salvage) is a common and widespread practice (Lindenmayer et al., 2008).  Considerable 

controversy surrounds this management practice with respect to ecosystem function and 

resilience (Lindenmayer et al., 2008; McIver and Starr, 2001; Noss et al., 2006).  Studies in 

recent years have reported effects on several ecosystem components including vegetation 

regeneration (Donato et al., 2006; Greene et al., 2006; Stuart et al., 1993), future fire behavior 

(Kulakowski and Veblen, 2007; Thompson et al., 2007), and wildlife (Cahall and Hayes, 2009).  

In virtually all cases, investigators found strong differences between post-fire-logged and 

unlogged stands.  However, many of these studies were opportunistic and did not directly 

measure the mechanisms associated with observed differences.   

 The major feature of post-fire logging is removal of the fire-killed tree (snag) overstory.  

Several authors have hypothesized that despite the leafless nature of fire-killed trees, 

considerable ‘dead shade’ exists in burned stands and that this shade moderates surface 

temperatures and/or moisture stress for regenerating vegetation (Hebblewhite et al., 2009; 

McIver and Starr, 2001).  Thus, shifts in temperature regime with snag removal have been 

posited as a primary mechanism underlying shifts in vegetation establishment and succession.  

This hypothesis may stem from studies of green-tree logging, which have reported higher 

maximum and lower minimum temperatures as well as elevated rates of cooling and heating in 

logged stands (Brooks and Kyker-Snowman, 2008; Brosofske et al., 1997; Chen et al., 1993; 

Devine and Harrington, 2007).  Wider temperature fluctuations were attributed to decreased 

absorption of solar radiation by canopy foliage during the day and increased losses of long-wave 
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radiation at night.  Yet exactly how or whether these patterns translate to the removal of dead 

trees has not been quantified. 

 Shade from snags has been suggested to have three main influences relating to surface 

microclimate: a) moderation of stand-level ambient surface air temperatures, b) provision of 

shade pockets near trees resulting in locally protected microclimates, and/or c) alterations to the 

soil-plant moisture continuum such as soil water potential and plant moisture stress (Donato et 

al., 2009; Hebblewhite et al., 2009; Minore, 1971).  Our objective was to investigate the first 

influence: stand-level ambient surface air temperatures.  Working in severely burned forests six 

years post-fire, we compared the stand-level surface air temperature regime, controlled for 

aspect, between stands differing only in post-fire logging treatment.  We hypothesized that fire-

killed trees would increase shading of stands during the day (reducing maximum temperatures) 

and possibly provide increased insulation at night (increasing minimum temperatures).     

METHODS 

Study Area  

The study was conducted in the Siskiyou Mountains of southwest Oregon, USA, within 

the Abies concolor (white fir) zone (Franklin and Dyrness (1973). The region is characterized by 

a Mediterranean-type climate with warm, dry summers (mean max. July temperature: 27 °C) and 

cool, wet winters (mean min. January temperature: 2 °C). (Agee, 1993; Taylor and Skinner, 

1998; USDA, 2004).  Fire regimes are of mixed-severity, with stand-replacement fire effects 

(≥90% overstory mortality) occurring as patches within a complex burn mosaic.  

All sample areas were mature to old-growth Douglas-fir (Pseudotsuga menziesii (Mirb) 

Franco) dominated forest prior to stand-replacement fire (see Agee, 1993; Thornburgh, 1982 for 
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developmental/structural descriptions).   Study areas were at mid-slope positions on steep terrain 

(generally >20°) between 1200-1300 m elevation on metasedimentary/metavolcanic soils.  

Study Fire and Treatments 

The Biscuit Fire burned with mixed severity over 200,000 ha of the Siskiyou Mountains 

in July-November, 2002.  Post-fire logging was conducted in limited areas of the burn, largely 

during the fall-spring of 2004-2005 (2-3 yr post-fire), in stand-replacement patches ranging from 

~4 to over 1000 ha.  Harvest units ranged from 1-70 ha in size (mean= 8 ha).  Harvest method 

consisted of hand felling and either helicopter or cable yarding; logs were limbed and bucked on 

site.  Harvest prescriptions called for varying levels of snag retention; in some units retained 

snags were clustered at the edge of units, resulting in a patch of >90% snag removal inside the 

unit. Harvest intensity in these units reduced basal area by over 90% but had a much smaller 

influence on ground cover (Fontaine et al., 2009).  Thus, any differences in temperature regime 

would most likely be due to the removal of the overstory.  

The sampling period spanned from 22 June – 02 October 2008, which included the 

warmest portion of the growing season.  We measured surface air temperature in each of four 

pairs (n=8 sensors total) representing logged and unlogged stands on northwesterly, westerly, 

southerly, and south-southeasterly aspects.  All sampled logged stands had experienced >90% 

snag removal at the scale of several hectares.  Study points (no more than one per harvest unit) 

were located randomly within harvest units and adjacent unlogged areas (>150m from harvest 

unit edges).  HOBO® temperature sensors (Onset Computer Corporation, Bourne, MA) 

equipped with naturally ventilated multiplate radiation shields appropriate for air temperature 

measurements and set to record hourly values were placed parallel to the slope, 0.10m above soil 
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surface, facing the dominant aspect.  Vegetation was absent from the immediate area (0.5m 

radius) surrounding the sensors.  In the plant associations we sampled, regenerating vegetation 

was still quite sparse and low-statured, thus having little influence on surface shade.  Differences 

in revegetation between logged and unlogged stands were negligible with respect to percent 

cover of herbs, litter, and bare ground (Fontaine, 2007).  Sensors recorded ambient surface air 

temperature once per hour throughout the sampling period.  Prior to and following deployment, 

temperature sensors were calibrated relative to one another.  At constant temperature all sensors 

were within 0.1°C of one another. 

Data Analysis 

We assessed the influence of post-fire logging on stand-level ambient surface air 

temperature and its variation with respect to aspect and time of day.  We first constructed a 

number of different metrics to represent differing hypotheses (see Chen et al., 1993 for a 

discussion of microclimatic temperature measurements).  For each entire day, we calculated the 

mean, maximum, minimum, and range of temperature values.  Within each day, we also isolated 

data for three periods, each representing a different phase of the daily temperature regime for 

which we calculated the mean temperature (12 hr-daytime: 0700-1800, 6 hr-heating period: 

0900-1400, 6 hr-cooling period: 1600-2100).  In addition we evaluated the variance in daytime 

temperature to test for the effect of shadow-casting by snags.   

For statistical analysis we applied a paired t-test and comparisons of group means and their 95% 

confidence intervals.  All analyses were conducted using R (R Development Core Team, 2008).  

Confidence intervals of hourly differences and their standard errors were based on n=8 sample 

units.  Within each experimental unit, mean temperatures and their standard errors were based on 
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n=102 observations, one for each day of the sampling period.  Paired t-tests were applied to all 8 

temperature metrics, 5 of which were calculated on a daily basis and 3 calculated from the mean 

of hourly measurements for a portion of each day (daytime, heating, cooling periods).  We found 

no evidence for departures from normality when examining probability plots although the limited 

replication precluded rigorous assessment of variance homogeneity.  The modest size of the 

dataset (n=4 pairs of temperature sensors) did not allow a formal test for an interaction between 

aspect and treatment.  Instead, to demonstrate variation by aspect we present means and standard 

errors within each aspect, as well as mean hourly temperatures throughout the study period, 

summarized by aspect for each treatment.  We  assessed seasonal trends in logging effect by re-

running the same analyses using weekly averages and visually examining plots of weekly 

averages of temperature measurements (mean, maximum, minimum, and range) for trends, and 

also by re-running the above analyses using the weekly averages.  None of these differed from 

comparisons of overall means.  

 

RESULTS 

Daily mean temperatures ranged from 9.1°C (01 September) to 27.5°C (18 August).  

Aspect effects on temperature in unlogged stands were typical for northern temperate forests, 

with southerly and south-southeasterly aspects recording the highest daily means and 

northwesterly aspects showing the lowest maximum temperatures (Figure 1 Table 1).   

Daily mean and maximum temperatures were not significantly related to post-fire logging 

(Table 2).  In general, daily temperature profiles in logged vs. control stands were characterized 
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by similar maximum temperatures (Figure 1).  However, daily minimum temperature was 

significantly lower in logged stands by ~1°C (Table 2, Figures 1-2).  Daily temperature changes 

in logged versus control stands were characterized by earlier and accelerated heating periods in 

the morning and early afternoon, followed by accelerated cooling rates in the evening/night 

(Figures 1-2).  Thus, temperatures in logged stands were significantly warmer by 1-2°C during 

the heating period (0900-1400) (Table 2, Figure 2).  The cooling period also showed 0.5-1.5°C 

differences between logged and control stands (Figure 2) which was characterized by a smaller, 

but significant, effect size (Table 2).   During the 12 daylight hours (0700-1800), overall mean 

temperatures did not differ (Table 2); however the magnitude of increased morning heating 

tended to exceed the difference in afternoon temperatures (Figure 2), suggesting greater overall 

daytime heating of logged versus unlogged stands.  Despite generally higher temperature 

variance in unlogged stands (Table 1), we found no statistical support for the hypothesis of 

higher variance in temperature in control stands due to tree shadows passing over temperature 

sensors (Table 2).  Effects of post-fire logging varied in size by aspect with the NW aspect 

generally showing the largest differences (Figure 1).  

DISCUSSION 

Our results suggest a similar, but muted, change in temperature pattern when compared 

with previous studies of microclimate in mature versus recently clearcut green forests (Chen et 

al., 1993), consistent with our original hypotheses.  Studies contrasting mature forest with 

recently clearcut forests have reported postharvest microclimates with higher maximum 

temperatures (1-5°C), lower minimum temperatures (1-3°C), and increased rates of 

cooling/heating relative to mature green forests (Brosofske et al., 1997; Chen et al., 1993).    The 
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effect sizes measured in this study are low (~1°C) relative to green tree studies but almost 

certainly reflect similar mechanisms.      

In contrast to minimum temperature, we found no evidence for increases in maximum 

near surface stand temperature between logged and unlogged postfire stands suggesting that 

snags are not intercepting a great deal of shortwave radiation.  Thus we conclude that snags 

likely intercept little direct shortwave radiation, with most of it reaching the surface.   We also 

found no evidence for increased daily temperature ranges in logged stands, despite similar 

maximum temperature and different minimum temperatures.  The elevated rates of heating we 

observed in logged stands may be a consequence of increased wind speed and convective heat 

transfer from soil during the morning transition because of lower stand scale heterogeneity. 

Similarly, higher wind speeds (and thus air mixing) in logged stands may be responsible for 

limiting maximum temperatures.  Changes in surface albedo with logging may also play a role. 

In a relevant study in sparse canopy conditions (semi-arid juniper woodland, leaf area index 0.7, 

128 trees ha-1), Anthoni et al. (2000) found that albedo (reflectivity) of the soil was 0.13, and the 

canopy was 0.10. Albedo of charred trees is likely very low, and a low albedo combined with 

low evapotranspiration can lead to local warming from partitioning of a larger amount of 

available energy into sensible rather than latent heat.  Thus, it is possible that albedo of charred 

trees offset any stand-level effects of shading.  The potential effects of changes in wind speed 

and albedo require future investigation. 

In summer-drought Mediterranean climate regimes, changes in growing-season moisture 

stress can strongly influence competitive dynamics (e.g., favoring of broadleaf sclerophyllous 

species), but the small changes in mean stand level temperature due to post-fire logging may not 
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be of sufficient magnitude to significantly affect soil moisture or leaf transpiration.  Fine scale 

microclimate may play a larger role, for example as observed in Mt St. Helens reforestation 

efforts (Winjum, 1984).  Moreover, the observed differences between logged and unlogged 

stands may not persist beyond ~15-20 years when snags become fragmented and have less 

influence on stand level microclimate and post-fire vegetation regeneration is well underway.  

We measured stands six years post-fire, by which time snags have begun to lose some fine twigs 

and branches from their canopies.  This study measured ambient surface air temperature (0.1m 

above the ground) in four pairs of temperature sensors grouped by aspect 6 years following fire 

and 3 years following post-fire logging.  The data presented here allow us to make inference to 

microclimatic conditions at the stand scale with respect to post-fire logging of the Biscuit Fire in 

the Siskiyou Mountains, Oregon, USA.  While we sampled across a range of aspects and logging 

units, we were limited to four treatment pairs which additionally limits inference.  Other forest 

types with more gentle terrain, continental climatic regimes, and different understory 

development patterns could show different microclimatic responses to post-fire logging.  It 

should be noted that these data represent near surface air temperature and not shallow soil 

temperatures.  Potentially high soil temperatures could exist in exposed environments which may 

impact vegetation development (i.e. conifer seedling survival and growth).  More work is 

required to investigate additional metrics such as soil moisture, soil temperature, relative 

humidity, and wind.   

Management of post-fire forests often includes planting of commercially valuable species 

such as conifers.  Declines in conifer seedling densities following post-fire logging (Donato et 

al., 2006; Greene et al., 2006) have been attributed to a number of mechanisms, including 

elevated daytime temperatures and/or altered thermal regimes.  Our results suggest that stand-
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scale temperatures do not appear to be elevated by post-fire logging, suggesting that variation in 

fine-scale microclimate (temperature, radiation, moisture) may be a more important factor (e.g., 

near the base of snags: Devine and Harrington, 2007).  Importantly, the sampling approach 

employed in this study was stand-scale, with four pairs of temperature sensors placed at random 

locales to assess ambient surface temperatures; we did not assess fine-scale variation in 

microclimate.  For example, it is possible that stable shady microsites exist at the base of large 

snags, and this may alter growing conditions more significantly in localized pockets.  Previous 

studies have shown the importance of microsites such as stumps and logs for conifer seedling 

survival (Minore, 1986).  While we were unable to detect any effects of shade-casting by snags 

(as measured by temporal variance in surface temperature), further study is required.  Higher 

fine-scale heterogeneity in unlogged stands relative to logged stands may play an important role 

in vegetation development following fire. 
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TABLES AND FIGURES 

Table 1.  Mean (SE) temperatures (°C) of logged and unlogged stands by aspect for eight measurements of microclimate for the entire 
study period (June-October 2008) in the Siskiyou Mountains, Oregon, USA.  

ASPECT:  NW S SSE W 
  Unlogged Logged Unlogged Logged Unlogged Logged Unlogged Logged 
Mean (24hr)  18.2 (0.4) 18.4 (0.4) 19.2 (0.3) 18.7 (0.3) 19.2 (0.3) 19.0 (0.3) 19.1 (0.3) 18.2 (0.3) 
Max (24hr)  26.9 (0.5) 28.4 (0.5) 31.1 (0.5) 30.6 (0.5) 33.5 (0.5) 31.6 (0.5) 31.0 (0.5) 29.5 (0.4) 
Min (24hr)  12.2 (0.3) 11.6 (0.3) 11.3 (0.3) 10.1 (0.3) 10.9 (0.3) 9.7 (0.3) 11.4 (0.3) 9.9 (0.3) 
Range (24hr)  14.6 (0.3) 16.7 (0.3) 19.8 (0.4) 20.4 (0.3) 22.5 (0.4) 21.9 (0.3) 19.6 (0.4) 19.6 (0.3) 
Mean (day‡)  21.5 (0.5) 22.2 (0.5) 24.1 (0.4) 24.4 (0.5) 24.8 (0.4) 25.4 (0.5) 23.7 (0.4) 23.6 (0.4) 
Variance (day‡)  25.7 (1.4) 35.4 (1.8) 42.8 (1.7) 40.7 (1.7) 47.2 (1.8) 34.9 (1.3) 48.2 (2.1) 38.0 (1.5) 
Mean (heating‡)  21.5 (0.5) 22.1 (0.5) 25.0 (0.5) 26.1 (0.5) 27.1 (0.5) 28.1 (0.5) 23.8 (0.4) 24.9 (0.5) 
Mean (cooling‡)  15.4 (0.4) 15.0 (0.4) 15.0 (0.3) 13.4 (0.3) 14.3 (0.3) 13.2 (0.3) 15.0 (0.3) 13.2 (0.3) 

‡daytime period was defined as the 12 hourly measurements spanning 0700-1800, heating as 0900-1400, and cooling as 1600-2100. 
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Table 2.  Mean difference, standard error, 95% confidence intervals and paired t-test results of comparisons of eight temperature 
metrics for surface air temperatures of stands with and without post-fire logging, Siskiyou Mountains, Oregon, USA. 
 

Comparison 
(logged vs. unlogged) Mean difference (°C) SE 95% Interval t-value P-value 

Mean (24 hr) -0.3 0.2 -1.1, 0.4 -1.47 0.24 
Max (24 hr) -0.6 0.7 -2.9, 1.8 -0.80 0.48 

Min (24 hr) -1.1 0.2 -1.7, -0.5 -6.09 0.009 

Range (24 hr) 0.6 0.6 -1.2, 2.4 0.98 0.40 

Mean (day‡) 0.4 0.2 -0.2, 1.0 2.24 0.11 

Variance (day‡) -3.7 5.0 -19.5, 12.1 -0.75 0.51 

Mean (heating‡) 1.0 0.1 0.6, 1.4 7.66 0.005 

Mean (cooling‡) -1.3 0.3 -2.2, -0.3 -4.19 0.025 

‡daytime period was defined as the 12 hourly measurements spanning 0700-1800, heating as 0900-1400, and cooling as 1600-2100. 
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FIGURES 

Figure 1. Mean daily temperature profiles (by hour) of all four sampled aspects (NW, S, SSE, 
W). The post-fire logging treatment was characterized by lower minimum temperatures and 
earlier warm up/cool down, but similar maximum temperatures. 

 Figure 2. Mean (95% confidence intervals) effect size, in degrees C, of post-fire logging 
treatment on temperature for each hour of the day across the entire study period relative to 
unlogged control stands.  Post-fire logging increased temperatures by ~1-2°C during mid-day 
(heating period: 0900-1400), and decreased temperatures by ~1-2°C in the evening (cooling 
period: 1900-0100).  These effects reflect the increased rates of warming/cooling in logged 
stands rather than differences in maximum and minimum temperatures. 
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