3 research outputs found

    Master index

    Get PDF

    Greedy algorithms, H-colourings and a complexity-theoretic dichotomy

    Get PDF
    Let H be a fixed undirected graph. An H-colouring of an undirected graph G is a homomorphism from G to H. If the vertices of G are partially ordered then there is a generic non-deterministic greedy algorithm which computes all lexicographically first maximal H-colourable subgraphs of G. We show that the complexity of deciding whether a given vertex of G is in a lexicographically first maximal H-colourable subgraph of G is NP-complete, if H is bipartite, and Σ2p{\bf \Sigma}_2^p-complete, if H is non-bipartite. This result complements Hell and Nesetril's seminal dichotomy result that the standard H-colouring problem is in P, if H is bipartite, and NP-complete, if H is non-bipartite. Our proofs use the basic techniques established by Hell and Nesetril, combinatorially adapted to our scenario
    corecore