3,569 research outputs found

    Greedy Structure Learning of Hierarchical Compositional Models

    Get PDF
    In this work, we consider the problem of learning a hierarchical generative model of an object from a set of im-ages which show examples of the object in the presenceof variable background clutter. Existing approaches tothis problem are limited by making strong a-priori assump-tions about the object’s geometric structure and require seg-mented training data for learning. In this paper, we pro-pose a novel framework for learning hierarchical compo-sitional models (HCMs) which do not suffer from the men-tioned limitations. We present a generalized formulation ofHCMs and describe a greedy structure learning frameworkthat consists of two phases: Bottom-up part learning andtop-down model composition. Our framework integratesthe foreground-background segmentation problem into thestructure learning task via a background model. As a result, we can jointly optimize for the number of layers in thehierarchy, the number of parts per layer and a foreground-background segmentation based on class labels only. Weshow that the learned HCMs are semantically meaningfuland achieve competitive results when compared to othergenerative object models at object classification on a stan-dard transfer learning dataset

    Do Multi-Sense Embeddings Improve Natural Language Understanding?

    Full text link
    Learning a distinct representation for each sense of an ambiguous word could lead to more powerful and fine-grained models of vector-space representations. Yet while `multi-sense' methods have been proposed and tested on artificial word-similarity tasks, we don't know if they improve real natural language understanding tasks. In this paper we introduce a multi-sense embedding model based on Chinese Restaurant Processes that achieves state of the art performance on matching human word similarity judgments, and propose a pipelined architecture for incorporating multi-sense embeddings into language understanding. We then test the performance of our model on part-of-speech tagging, named entity recognition, sentiment analysis, semantic relation identification and semantic relatedness, controlling for embedding dimensionality. We find that multi-sense embeddings do improve performance on some tasks (part-of-speech tagging, semantic relation identification, semantic relatedness) but not on others (named entity recognition, various forms of sentiment analysis). We discuss how these differences may be caused by the different role of word sense information in each of the tasks. The results highlight the importance of testing embedding models in real applications

    A Hierarchical Neural Autoencoder for Paragraphs and Documents

    Full text link
    Natural language generation of coherent long texts like paragraphs or longer documents is a challenging problem for recurrent networks models. In this paper, we explore an important step toward this generation task: training an LSTM (Long-short term memory) auto-encoder to preserve and reconstruct multi-sentence paragraphs. We introduce an LSTM model that hierarchically builds an embedding for a paragraph from embeddings for sentences and words, then decodes this embedding to reconstruct the original paragraph. We evaluate the reconstructed paragraph using standard metrics like ROUGE and Entity Grid, showing that neural models are able to encode texts in a way that preserve syntactic, semantic, and discourse coherence. While only a first step toward generating coherent text units from neural models, our work has the potential to significantly impact natural language generation and summarization\footnote{Code for the three models described in this paper can be found at www.stanford.edu/~jiweil/
    • …
    corecore