14 research outputs found

    Adaptive Dynamics of Realistic Small-World Networks

    Full text link
    Continuing in the steps of Jon Kleinberg's and others celebrated work on decentralized search in small-world networks, we conduct an experimental analysis of a dynamic algorithm that produces small-world networks. We find that the algorithm adapts robustly to a wide variety of situations in realistic geographic networks with synthetic test data and with real world data, even when vertices are uneven and non-homogeneously distributed. We investigate the same algorithm in the case where some vertices are more popular destinations for searches than others, for example obeying power-laws. We find that the algorithm adapts and adjusts the networks according to the distributions, leading to improved performance. The ability of the dynamic process to adapt and create small worlds in such diverse settings suggests a possible mechanism by which such networks appear in nature

    The Internet AS-Level Topology: Three Data Sources and One Definitive Metric

    Full text link
    We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the WHOIS topology. Among the widely considered metrics, we find that the joint degree distribution appears to fundamentally characterize Internet AS topologies as well as narrowly define values for other important metrics. We discuss the interplay between the specifics of the three data collection mechanisms and the resulting topology views. In particular, we show how the data collection peculiarities explain differences in the resulting joint degree distributions of the respective topologies. Finally, we release to the community the input topology datasets, along with the scripts and output of our calculations. This supplement should enable researchers to validate their models against real data and to make more informed selection of topology data sources for their specific needs.Comment: This paper is a revised journal version of cs.NI/050803

    Systematic Topology Analysis and Generation Using Degree Correlations

    Full text link
    We present a new, systematic approach for analyzing network topologies. We first introduce the dK-series of probability distributions specifying all degree correlations within d-sized subgraphs of a given graph G. Increasing values of d capture progressively more properties of G at the cost of more complex representation of the probability distribution. Using this series, we can quantitatively measure the distance between two graphs and construct random graphs that accurately reproduce virtually all metrics proposed in the literature. The nature of the dK-series implies that it will also capture any future metrics that may be proposed. Using our approach, we construct graphs for d=0,1,2,3 and demonstrate that these graphs reproduce, with increasing accuracy, important properties of measured and modeled Internet topologies. We find that the d=2 case is sufficient for most practical purposes, while d=3 essentially reconstructs the Internet AS- and router-level topologies exactly. We hope that a systematic method to analyze and synthesize topologies offers a significant improvement to the set of tools available to network topology and protocol researchers.Comment: Final versio

    Networks become navigable as nodes move and forget

    Get PDF
    We propose a dynamical process for network evolution, aiming at explaining the emergence of the small world phenomenon, i.e., the statistical observation that any pair of individuals are linked by a short chain of acquaintances computable by a simple decentralized routing algorithm, known as greedy routing. Previously proposed dynamical processes enabled to demonstrate experimentally (by simulations) that the small world phenomenon can emerge from local dynamics. However, the analysis of greedy routing using the probability distributions arising from these dynamics is quite complex because of mutual dependencies. In contrast, our process enables complete formal analysis. It is based on the combination of two simple processes: a random walk process, and an harmonic forgetting process. Both processes reflect natural behaviors of the individuals, viewed as nodes in the network of inter-individual acquaintances. We prove that, in k-dimensional lattices, the combination of these two processes generates long-range links mutually independently distributed as a k-harmonic distribution. We analyze the performances of greedy routing at the stationary regime of our process, and prove that the expected number of steps for routing from any source to any target in any multidimensional lattice is a polylogarithmic function of the distance between the two nodes in the lattice. Up to our knowledge, these results are the first formal proof that navigability in small worlds can emerge from a dynamical process for network evolution. Our dynamical process can find practical applications to the design of spatial gossip and resource location protocols.Comment: 21 pages, 1 figur

    Recovering the Long Range Links in Augmented Graphs

    Get PDF
    The augmented graph model, as introduced by Kleinberg (STOC 2000), is an appealing model for analyzing navigability in social networks. Informally, this model is defined by a pair (H,phi), where H is a graph in which inter-node distances are supposed to be easy to compute or at least easy to estimate. This graph is "augmented" by links, called long range links, which are selected according to the probability distribution phi. The augmented graph model enables the analysis of greedy routing in augmented graphs G in (H,phi). In greedy routing, each intermediate node handling a message for a target t selects among all its neighbors in G the one that is the closest to t in H and forwards the message to it. This paper addresses the problem of checking whether a given graph G is an augmented graph. It answers part of the questions raised by Kleinberg in his Problem 9 (Int. Congress of Math. 2006). More precisely, given G in (H,phi), we aim at extracting the base graph H and the long range links R out of G. We prove that if H has a high clustering coefficient and bounded doubling dimension, then a simple algorithm enables to partition the edges of G into two sets H' and R' such that E(H) is included in H' and the edges in H'\E(H) are of small stretch, i.e., the map H is not perturbed too greatly by undetected long range links remaining in H'. The perturbation is actually so small that we can prove that the expected performances of greedy routing in G using the distances in H' are close to the expected performances of greedy routing in (H,phi). Although this latter result may appear intuitively straightforward, since H' is included in E(H), it is not, as we also show that routing with a map more precise than H may actually damage greedy routing significantly. Finally, we show that in absence of a hypothesis regarding the high clustering coefficient, any structural attempt to extract the long range links will miss the detection of at least Ω(n5Ï”/log⁥n)\Omega(n^{5\epsilon}/\log n) long range links of stretch at least Ω(n1/5−ϔ)\Omega(n^{1/5-\epsilon}) for any 0<Ï”<1/50<\epsilon<1/5, and thus the map H cannot be recovered with good accuracy. To sum up, we solve Kleinberg's Problem 9 in the sense that we show that reconstructing augmented graphs is achievable if and only if the base graph has a high clustering coefficient

    Distributed computing of efficient routing schemes in generalized chordal graphs

    Get PDF
    International audienceEfficient algorithms for computing routing tables should take advantage of the particular properties arising in large scale networks. Two of them are of particular interest: low (logarithmic) diameter and high clustering coefficient. High clustering coefficient implies the existence of few large induced cycles. Considering this fact, we propose here a routing scheme that computes short routes in the class of kk-chordal graphs, i.e., graphs with no induced cycles of length more than kk. In the class of kk-chordal graphs, our routing scheme achieves an additive stretch of at most k−1k-1, i.e., for all pairs of nodes, the length of the route never exceeds their distance plus k−1k-1. In order to compute the routing tables of any nn-node graph with diameter DD we propose a distributed algorithm which uses messages of size O(log⁡n)O(\log n) and takes O(D)O(D) time. The corresponding routing scheme achieves the stretch of k−1k-1 on kk-chordal graphs. We then propose a routing scheme that achieves a better additive stretch of 11 in chordal graphs (notice that chordal graphs are 3-chordal graphs). In this case, the distributed computation of the routing tables takes O(min⁡{ΔD,n})O(\min\{\Delta D , n\}) time, where Δ\Delta is the maximum degree of the graph. Our routing schemes use addresses of size log⁡n\log n bits and local memory of size 2(d−1)log⁡n2(d-1) \log n bits per node of degree dd
    corecore