2 research outputs found

    Greedy Routing Recovery Using Controlled Mobility in Wireless Sensor Networks

    Get PDF
    International audienceOne of the most current routing families in wireless sensor networks is geographic routing. Using nodes location, they generally ap- ply a greedy routing that makes a sensor forward data to route to one of its neighbors in the forwarding direction of the destination. If this greedy step fails, the routing protocol triggers a recovery mechanism. Such re- covery mechanisms are mainly based on graph planarization and face traversal or on a tree construction. Nevertheless real-world network pla- narization is very difficult due to the dynamic nature of wireless links and trees are not so robust in such dynamic environments. Recovery steps generally provoke huge energy overhead with possibly long inefficient paths. In this paper, we propose to take advantage of the introduction of controlled mobility to reduce the triggering of a recovery process. We propose Greedy Routing Recovery (GRR) routing protocol. GRR en- hances greedy routing energy efficiency as it adapts network topology to the network activity. Furthermore GRR uses controlled mobility to relocate nodes in order to restore greedy and reduce energy consuming recovery step triggering. Simulations demonstrate that GRR successfully bypasses topology holes in more than 72% of network topologies avoid- ing calling to expensive recovery steps and reducing energy consumption while preserving network connectivity

    Geographic GReedy routing with ACO recovery strategy GRACO

    Get PDF
    International audienceGeographic routing is an attractive routing strategy in wireless sensor networks. It works well in dense networks, but it may suffer from the void problem. For this purpose, a recovery step is required to guarantee packet delivery. Face routing has widely been used as a recovery strategy since proved to guarantee delivery. However, it relies on a planar graph not always achievable in realistic wireless networks and may generate long paths. In this paper, we propose GRACO, a new geographic routing algorithm that combines a greedy forwarding and a recovery strategy based on swarm intelligence. During recovery, ant packets search for alternative paths and drop pheromone trails to guide next packets within the network. GRACO avoids holes and produces near optimal paths. Simulation results demonstrate that GRACO leads to a significant improvement of routing performance and scalability when compared to the literature algorithms
    corecore