20 research outputs found

    Simultaneous Codeword Optimization (SimCO) for Dictionary Update and Learning

    Get PDF
    We consider the data-driven dictionary learning problem. The goal is to seek an over-complete dictionary from which every training signal can be best approximated by a linear combination of only a few codewords. This task is often achieved by iteratively executing two operations: sparse coding and dictionary update. In the literature, there are two benchmark mechanisms to update a dictionary. The first approach, such as the MOD algorithm, is characterized by searching for the optimal codewords while fixing the sparse coefficients. In the second approach, represented by the K-SVD method, one codeword and the related sparse coefficients are simultaneously updated while all other codewords and coefficients remain unchanged. We propose a novel framework that generalizes the aforementioned two methods. The unique feature of our approach is that one can update an arbitrary set of codewords and the corresponding sparse coefficients simultaneously: when sparse coefficients are fixed, the underlying optimization problem is similar to that in the MOD algorithm; when only one codeword is selected for update, it can be proved that the proposed algorithm is equivalent to the K-SVD method; and more importantly, our method allows us to update all codewords and all sparse coefficients simultaneously, hence the term simultaneous codeword optimization (SimCO). Under the proposed framework, we design two algorithms, namely, primitive and regularized SimCO. We implement these two algorithms based on a simple gradient descent mechanism. Simulations are provided to demonstrate the performance of the proposed algorithms, as compared with two baseline algorithms MOD and K-SVD. Results show that regularized SimCO is particularly appealing in terms of both learning performance and running speed.Comment: 13 page

    Near-Optimal Source Placement for Linear Physical Fields

    Get PDF
    In real-word applications, signal processing is often used to measure and control a physical field by means of sensors and sources, respectively. An aspect that has been often neglected is the optimization of the sources' locations. In this work, we discuss the source placement problem as the dual of the sensor placement problem and propose two polynomial-time algorithms, for scenarios with or without noise. Both algorithms are near-optimal and indicate the possibility to make the control of such physical fields easier, more efficient and stabler to noise

    Causal meets Submodular: Subset Selection with Directed Information

    Get PDF
    We study causal subset selection with Directed Information as the measure of prediction causality. Two typical tasks, causal sensor placement and covariate selection, are correspondingly formulated into cardinality constrained directed information maximizations. To attack the NP-hard problems, we show that the first problem is submodular while not necessarily monotonic. And the second one is "nearly" submodular. To substantiate the idea of approximate submodularity, we introduce a novel quantity, namely submodularity index (SmI), for general set functions. Moreover, we show that based on SmI, greedy algorithm has performance guarantee for the maximization of possibly non-monotonic and non-submodular functions, justifying its usage for a much broader class of problems. We evaluate the theoretical results with several case studies, and also illustrate the application of the subset selection to causal structure learning
    corecore