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Abstract

We study causal subset selection with Directed Information as the measure of
prediction causality. Two typical tasks, causal sensor placement and covariate
selection, are correspondingly formulated into cardinality constrained directed
information maximizations. To attack the NP-hard problems, we show that the first
problem is submodular while not necessarily monotonic. And the second one is
“nearly” submodular. To substantiate the idea of approximate submodularity, we
introduce a novel quantity, namely submodularity index (SmI), for general set func-
tions. Moreover, we show that based on SmI, greedy algorithm has performance
guarantee for the maximization of possibly non-monotonic and non-submodular
functions, justifying its usage for a much broader class of problems. We evaluate
the theoretical results with several case studies, and also illustrate the application
of the subset selection to causal structure learning.

1 Introduction

A wide variety of research disciplines, including computer science, economic, biology and social
science, involve causality analysis of a network of interacting random processes. In particular, many
of those tasks are closely related to subset selection. For example, in sensor network applications,
with limited budget it is necessary to place sensors at information “sources” that provide the best
observability of the system. To better predict a stock under consideration, investors need to select
causal covariates from a pool of candidate information streams. We refer to the first type of problems
as “causal sensor placement”, and the second one as “causal covariate selection”.

To solve the aforementioned problems we firstly need a causality measure for multiple random
processes. In literature, there exists two types of causality definitions, one is related with time
series prediction (called Granger-type causality) and another with counter-factuals [18]. We focus
on Granger-type prediction causality substantiated with Directed Information (DI), a tool from
information theory. Recently, a large body of work has successfully employed DI in many research
fields, including influence mining in gene networks [14], causal relationship inference in neural spike
train recordings [19], and message transmission analysis in social media [23]. Compared to model-
based or testing-based methods such as [2][21], DI is not limited by model assumptions and can
naturally capture non-linear and non-stationary dependence among random processes. In addition, it
has clear information theoretical interpretation and admits well-established estimation techniques. In
this regards, we formulate causal sensor placement and covariate selection into cardinality constrained
directed information maximizations problems.

We then need an efficient algorithm that makes optimal subset selection. Although subset selection, in
general, is not tractable due to its combinatorial nature, the study of greedy heuristics for submodular
objectives has shown promising results in both theory and practice. To list a few, following the
pioneering work [8] that proves the near optimal 1− 1/e guarantee, [12] [1] investigates the submod-
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ularity of mutual information under Gaussian assumption, and then uses a greedy algorithm for sensor
placement. In the context of speech and Nature Language Processing (NLP), the authors of and [13]
adopt submodular objectives that encourage small vocabulary subset and broad coverage, and then
proceed to maximization with a modified greedy method. In [3], the authors combine insights from
spectral theory and submodularity analysis of R2 score, and their result remarkably explains the near
optimal performance of forward regression and orthogonal matching pursuit.

In this work, we also attack the causal subset selection problem via submodularity analysis. We show
that the objective function of causal sensor placement, i.e., DI from selected set to its complement,
is submodular, although not monotonic. And the problem of causal covariates selection, i.e., DI
from selected set to some target process, is not submodular in general but is “nearly” submodular in
particular cases. Since classic results require strictly submodularity and monotonicity which cannot
be established for our purpose, we propose a novel measure of the degree of submodularity and show
that, the performance guarantee of greedy algorithms can be obtained for possibly non-monotonic
and non-submodular functions. Our contributions are: (1) Two important causal subset selection
objectives are formulated with directed information and the corresponding submodularity analysis
are conducted. (2) The SmI dependent performance bound implies that submodularity is better
characterized by a continuous indicator than being used as a “yes or no” property, which extends the
application of greedy algorithms to a much broader class of problems.

The rest of the paper is organized as follows. In next section, we briefly review the notion of directed
information and submodular function. Section 3 is devoted to problem formulation and submodularity
analysis. In section 4, we introduce SmI and provides theoretical results on performance guarantee of
random and deterministic greedy algorithms. Finally in Section 5, we conduct experiments to justify
our theoretical findings and illustrate a causal structure learning application.

2 Preliminary

Directed Information Consider two random process Xn and Y n, we use the convention that
Xi = {X0, X1, ...Xi}, with t = 0, 1, ..., n as the time index. Directed Information from Xn to Y n
is defined in terms of mutual information:

I(Xn → Y n) =

n∑
t=1

I(Xt;Yt|Y t−1) (1)

which can be viewed as the aggregated dependence between the history of process X and the current
value of process Y , given past observations of Y . The above definition captures a natural intuition
about causal relationship, i.e., the unique information Xt has on Yt, when the past of Y t−1 is known.

With causally conditioned entropy defined by H(Y n||Xn) ,
∑n
t=1H(Yt|Y t−1, Xt), the directed

information from Xn to Y n when causally conditioned on the series Zn can be written as

I(Xn → Y n||Zn) = H(Y n||Zn)−H(Y n||Xn, Zn) =

n∑
t=1

I(Xt;Yt|Y t−1, Zt) (2)

Observe that causally conditioned directed information is expressed as the difference between two
causally conditioned entropy, which can be considered as “causal uncertainty reduction”. With
this interpretation one is able to relate directed information to Granger Causality. Denote X̄ as the
complement of X in a a universal set V , then,

Theorem 1 [20] With log loss, I(Xn → Y n||X̄t) is precisely the value of the side information
(expected cumulative reduction in loss) thatX has, when sequentially predicting Y with the knowledge
of X̄ . The predictors are distributions with minimal expected loss.

In particular, with linear models directed information is equivalent to Granger causality for jointly
Gaussian processes.

Submodular Function There are three equivalent definitions of submodular functions, and each
of them reveals a distinct character of submodularity, a diminishing return property that universally
exists in economics, game theory and network systems.
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Definition 1 A submodular funciton is a set function f : 2Ω → R, which satisfies one of the three
equivalent definitions:
(1) For every S, T ⊆ Ω with S ⊆ T , and every x ∈ Ω \ T , we have that

f (S ∪ {x})− f(S) ≥ f (T ∪ {x})− f(T ) (3)

(2) For every S, T ⊆ Ω, we have that

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) (4)
(3) For every S ⊆ Ω, and x1, x2 ∈ Ω \ S, we have that

f (S ∪ {x1}) + f (S ∪ {x2}) ≥ f (S ∪ {x1, x2}) + f(S) (5)

A set function f is called supermodular if −f is submodular. The first definition is directly related
to the diminishing return property. The second definition is better understood with the classic
max k-cover problem [4]. The third definition indicates that the contribution of two elements is
maximized when they are added individually to the base set. Throughout this paper, we will denote
fx(S) , f (S ∪ x)− f(S) as the “first order derivative” of f at base set S for further analysis.

3 Problem Formulation and Submodularity Analysis

In this section, we first formulate two typical subset selection problems into cardinality constrained
directed information maximization. Then we address the issues of submodularity and monotonicity
in details. All proofs involved in this and the other sections, are given in supplementary material.

Causal Sensor Placement and Covariates Selection by Maximizing DI To motivate the first
formulation, imagine we are interested in placing sensors to monitor pollution particles in a vast
region. Ideally, we would like to put k sensors, which is a given budget, at pollution sources to better
predict the particle dynamics for other areas of interest. As such, the placement locations can be
obtained by maximizing the directed information from selected location set S to its complement S
(in the universal set V that contains all candidate sites). Then this type of “causal sensor placement”
problems can be written as

argmax
S⊆V,|S|≤k

I(Sn → Sn) (OPT1)

Regarding the causal covariates selection problem, the goal is to choose a subset S from a universal
set V , such that S has maximal prediction causality to a (or several) target process Y . To leverage
sparsity, the cardinality constraints |S| ≤ k is also imposed on the number of selected covariates.
Again with directed information, this type of subset selection problems reads

argmax
S⊆V,|S|≤k

I(Sn → Y n) (OPT2)

The above two optimizations are hard even in the most reduced cases: Consider a collection of
causally independent Gaussian processes, then the above problems are equivalent to the D-optimal
design problem, which has been shown to be NP-hard [11]. Unless “P = NP”, it is unlikely to find
any polynomial algorithm for the maximization, and a resort to tractable approximations is necessary.

Submodularity Analysis of the Two Objectives Fortunately, we can show that the objective
function of OPT1, the directed information from selected processes to unselected ones, is submodular.

Theorem 2 The objective I(Sn → S̄n) as a function of S ⊆ V is submodular.

The problem is that OPT1 is not monotonic for all S, which can be seen since both I(∅ → V ) and
I(V → ∅) are 0 by definition. On the other hand, the deterministic greedy algorithm has guaranteed
performance only when the objective function is monotonic up to 2k elements. In literature, several
works have been addressing the issue of maximizing non-monotonic submodular function [6][7][17].
In this work we mainly analysis the random greedy technique proposed in [17], which is simpler
compared to other alternatives and achieves best-known guarantees.

Concerning the second objective OPT2, we make a slight detour and take a look at the property of its
“first derivative”.
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Proposition 1 fx(S) = I(Sn ∪ xn → Y n)− I(Sn → Y n) = I(xn → Y n||Sn)

Thus, the derivative is the directed information from processes x to Y causally conditioned on S.
By the first definition of submodularity, if the derivative is decreasing in S, i.e. if fx(S) ≥ fx(T )
for any S ⊆ T ⊆ V and x ⊆ V \ T , then the objective I(Sn → Y n) is a submodular function.
Intuition may suggest this is true since knowing more (conditioning on a larger set) seems to reduce
the dependence (and also the causality) of two phenomena under consideration. However, in general,
this conjecture is not correct, and a counterexample could be constructed by having “explaining away”
processes. Hence the difficulty encountered for solved OPT2 is that the objective is not submodular.
Note that with some extra conditional independence assumptions we can justify its submodularity,

Proposition 2 If for any two processes s1, s2 ∈ S, we have the conditional independence that
(s1t ⊥⊥ s2t | Yt), then I(Sn → Y n) is a monotonic submodular function of set S.

In practice, the assumption made in the above proposition is hard to check. Yet one may wonder that
if the conditional dependence is weak or sparse, possibly a greedy selection still works to some extent
because the submodularity is not severely deteriorated. Extending this idea we propose Submodularity
Index (SmI), a novel measure of the degree of submodularity for general set functions, and we will
provide the performance guarantee of greedy algorithms as a function of SmI.

4 Submodularity Index and Performance Guarantee

For the ease of notation, we use f to denote a general set function and treat directed information
objectives as special realizations. It’s worth mentioning that in literature, several effort has already
been made to characterize approximate submodularity, such as the ε relaxation of definition (3)
proposed in [5] for a dictionary selection objective, and the submodular ratio proposed in [3].
Compared to existing works, the SmI suggested in this work (1) is more generally defined for all set
functions, (2) does not presume monotonicity, and (3) is more suitable for tasks involving information,
influence, and coverage metrics in terms of computational convenience.

SmI Definition and its Properties We start by defining the local submodular index for a function
f at location A for a candidate set S

ϕf (S,A) ,
∑
x∈S

fx(A)− fS(A) (6)

which can be considered as an extension of the third definition (5) of submodularity. In essence,
it captures the difference between the sum of individual effect and aggregated effect on the first
derivative of the function. Moreover, it has the following property:

Proposition 3 For a given submodular function f , the local submodular index ϕf (S,A) is a super-
modular function of S.

Now we define SmI by minimizing over set variables:

Definition 2 For a set function f : 2V → R the submodularity index (SmI) for a location set L and
a cardinality k, denoted by λf (L, k), is defined as

λf (L, k) , min
A⊆L

S∩A=∅, |S|≤k

ϕf (S,A)
(7)

Thus, SmI is the smallest possible value of local submodularity indexes subject to |S| ≤ k. Note
that we implicitly assume |S| ≥ 2 in the above definition, as in the cases where |S| = {0, 1}, SmI
reduces to 0. Besides, the definition of submodularity can be alternatively posed with SmI,

Lemma 1 A set function f is submodular if and only if λf (L, k) ≥ 0, ∀ L ⊆ V and k.

For functions that are already submodular, SmI measures how strong the submodularity is. We call a
function super-submodular if its SmI is strictly larger than zero. On the other hand for functions that
are not submodular, SmI provides an indicator of how close the function is to submodular. We call a
function quasi-submodular if it has a negative but close to zero SmI.
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Direct computation of SmI by solving (7) is hard. For the purpose of obtaining performance guarantee,
however, a lower bound of SmI is sufficient and is much easier to compute. Consider the objective of
(OPT1), which is already a submodular function. By using proposition 3, we conclude that its local
submodular index is a super-modular function for fixed location set. Hence computing (7) becomes
a cardinality constrained supermodular minimization problem for each location set. Besides, the
following decomposition is useful to avoid extra work on directed information estimation:

Proposition 4 The local submodular index of the function I({•}n → {V \ •}n) can be decomposed
as ϕI({•}n→{V \•}n)(S

n, An) = ϕH({V \•}n)(S
n, An) +

∑n
t=1 ϕH({•}|V t−1)(St, At), where H(•)

is the entropy function.

The lower bound of SmI for the objective of OPT2 is more involved. With some work on an alternative
representation of causally conditioned directed information, we obtain that

Lemma 2 For any location sets L ⊆ V , cardinality k, and target process set Y , we have

λI({•}n→Y n)(L, k) ≥ min
W⊆V

|W |≤|L|+k

n∑
t=1

{
G|L|+k

(
W t, Y t−1

)
− G|L|+k

(
W t, Y t

)}
(8)

≥ − max
W⊆V

|W |≤|L|+k

I(Wn → Y n) ≥ −I(V n → Y n) (9)

where the function Gk(W,Z) ,
∑
w∈W H(w|Z)− kH(W |Z) is super-modular of W .

Since (8) is in fact minimizing (maximizing) the difference of two supermodular (submodular)
functions, one can use existing approximate or exact algorithms [10] [16] to compute the lower bound.
(9) is often a weak lower bound, although is much easier to compute.

Random Greedy Algorithm and Performance Bound with SmI With the introduction of SmI,
in this subsection, we analyze the performance of the random greedy algorithm for maximizing
non-monotonic, quasi- or super-submodular function in a unified framework. The results broaden the
theoretical guarantee for a much richer class of functions.

Algorithm 1 Random Greedy for Subset Selection
S0 ← φ
for i = 1, ..., k do
Mi = argmaxMi⊆V \Si−1,|Mi|=k

∑
u∈Mi

fu(Si)

Draw ui uniformly from Mi

Si ← Si−1 ∪ {ui}
end for

The randomized greedy algorithm was recently
proposed in [17] [22] for maximizing cardinality
constrained non-monotonic submodular func-
tions. Also in [17], a 1/e expected performance
bound was provided. The overall procedure is
summarized in algorithm 1 for reference. Note
that the random greedy algorithm only requires
O(k|V |) calls of the function evaluation, mak-
ing it suitable for large-scale problems.

In order to analyze the performance of the algorithm, we start with two lemmas that reveal more
properties of SmI. The first lemma shows that the monotonicity of the first derivative of a general set
function f could be controlled by its SmI.

Lemma 3 Given a set function f : V → R, and the corresponding SmI λf (L, k) defined in
(7), and also let set B = A ∪ {y1, ..., yM} and x ∈ B . For an ordering {j1, ..., jM}, define
Bm = A ∪ {yj1 , ..., yjm}, B0 = A, BM = B, we have

fx(A)− fx(B) ≥ max
{j1,...,jM}

M−1∑
m=0

λf (Bm, 2) ≥Mλf (B, 2) (10)

Essentially, the above result implies that as long as SmI can be lower bounded by some small negative
number, the submodularity (the decreasing derivative property (3) in Definition 1) is not severely
degraded. The second lemma provides an SmI dependent bound on the expected value of a function
with random arguments.

Lemma 4 Let the set function f : V → R be quasi submodular with λf (L, k) ≤ 0. Also let S(p)
a random subset of S, with each element appears in S(p) with probability at most p, then we have
E [f(S(p))] ≥ (1− p1)f(∅) + γS,p, with γS,p ,

∑|S|
i=1(i− 1)pλf (Si, 2).
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Now we present the main theory and provide refined bounds for two different cases when the function
is monotonic (but not necessarily submodular) or submodular (but not necessarily monotonic).

Theorem 3 For a general (possibly non-monotonic, non-submodular) functions f , let the optimal
solution of the cardinality constrained maximization be denoted as S∗, and the solution of random
greedy algorithm be Sg then

E [f(Sg)] ≥

(
1

e
+

ξfSg,k

E[f (Sg)]

)
f(S∗)

where ξfSg,k = λf (Sg, k) + k(k−1)
2 min{λf (Sg, 2), 0}.

The role of SmI in determining the performance of the random greedy algorithm is revealed: the
bound consist of 1/e ≈ 0.3679 plus a term as a function of SmI. If SmI = 0, the 1/e bound in
previous literature is recovered. For super-submodular functions, as SmI is strictly larger than zero, the
theorem provides a stronger guarantee by incorporating SmI. For quasi-submodular functions having
negative SmI, although a degraded guarantee is produced, the bound is only slightly deteriorated
when SmI is close to zero. In short, the above theorem not only encompasses existing results as
special cases, but also suggests that we should view submodularity and monotonicity as a “continuous”
property of set functions. Besides, greedy heuristics should not be restricted to the maximization
of submodular functions, but can also be applied for “quasi-submodular” functions because a near
optimal solution is still achievable theoretically. As such, we can formally define quasi-submodular

functions as those having an SmI such that
ξfS,k

E[f(S)] > −
1
e .

Corollary 1 For monotonic functions in general, random greedy algorithm achieves

E [f(Sg)] ≥
(

1− 1

e
+
λ′f (Sg, k)

E [f(Sg)]

)
f(S∗)

and deterministic greedy algorithm also achieves f(Sg) ≥
(

1− 1
e +

λ′f (Sg,k)

f(Sg)

)
f(S∗), where

λ′f (Sg, k) =

{
λf (Sg, k) if λf (Sg, k) < 0

(1− 1/e)2λf (Sg, k) if λf (Sg, k) ≥ 0
.

We see that in the monotonic case, we get a stronger bound for submodular functions compared to the
1− 1/e ≈ 0.6321 guarantee. Similarly, for quasi-submodular functions, the guarantee is degraded
but not too much if SmD is close to 0. Note that the objective function of OPT2 fits into this category.
For submodular but non-monotonic functions, e.g., the objective function of OPT1, we have

Corollary 2 For submodular function that are not necessarily monotonic, random greedy algorithm
has performance

E [f(Sg)] ≥
(

1

e
+
λf (Sg, k)

E [f(Sg)]

)
f(S∗)

5 Experiment and Applications

In this section, we conduct experiments to verify the theoretical results, and provide an example that
uses subset selection for causal structure learning.

Data and Setup The synthesis data is generated with the Bayes network Toolbox (BNT) [15]
using dynamic Bayesian network models. Two sets of data, denoted by D1 and D2, are simulated,
each containing 15 and 35 processes, respectively. For simplicity, all processes are {0, 1} valued.
The processes are created with both simultaneous and historical dependence on each other. The order
(memory length) of the historical dependence is set to 3. The MCMC sampling engine is used to
draw n = 104 points for both D1 and D2. The stock market dataset, denoted by ST, contains hourly
values of 41 stocks and indexes for the years 2014-2015. Note that data imputation is performed to
amend a few missing values, and all processes are aligned in time. Moreover, we detrend each time
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series with a recursive HP-filter [24] to remove long-term daily or monthly seasonalities that are not
relevant for hourly analysis.

Directed information is estimated with the procedure proposed in [9], which adopts the context tree
weighting algorithm as an intermediate step to learn universal probability assignment. Interested
readers are referred to [19][20] for other possible estimators. The maximal context tree depth is set to
5, which is sufficient for both the synthesis datasets and the real-world ST dataset.

Causal Subset Selection Results

Figure 1: Solution and Bounds for OPT1 on D1 Figure 2: Solution and Bounds for OPT2 on ST

Firstly, the causal sensor placement problem, OPT1, is solved on data set D1 with the random greedy
algorithm. Figure 1 shows the optimal solution by exhaustive search (red-star), random greedy
solution (blue-circle), the 1/e reference bound (cyan-triangle), and the bound with SmI (magenta-
diamond), each for cardinality constraints imposed from k = 2 to k = 8. It is seen that the random
greedy solution is close to the true optimum. In terms of computational time, the greedy method
finishes in less than five minutes, while the exhaustive search takes about 10 hours on this small-scale
problem (|V | = 15). Comparing two bounds in Figure 1, we see that the theoretical guarantee is
greatly improved, and a much tighter bound is produced with SmI. The corresponding normalized
SmI values, defined by SmI

f(Lg) , is shown in the first row of Table 1. As a consequence of those strictly
positive SmI values and Corollary 2, the guarantees are made greater than 1/e. This observation
justifies that the bounds with SmI are better indicators of the performance of the greedy heuristic.

Table 1: Normalized submodularity index (NSmI) for OPT1 on D1 and OPT2 on ST at locations of
greedy selections. Cardinality is imposed from k = 2 to k = 8.

k = 2 3 4 5 6 7 8
normalized SmI for OPT1 0.382 0.284 0.175 0.082 0.141 0.078 0.074
normalized SmI for OPT2 -0.305 0.071 -0.068 -0.029 0.030 0.058 0.092

Secondly, the causal covariates selection problem, OPT2, is solved on ST dataset with the stock XOM
used as the target process Y . The results of random greedy, exhaustive search, and performance
bound (Corollary 1) are shown in Figure 2, and normalized SmIs are listed in the second row of
Table 1. Note that the 1 − 1/e reference line (green-triangle) in the figure is only for comparison
purpose and is NOT an established bound. We observe that although the objective is not submodular,
the random greedy algorithm is still near optimal. As we compare the reference line and the bound
calculated with SmI (magenta-diamond), we see that the performance guarantee can be either larger
or smaller than 1−1/e, depending on the sign of SmI. By definition, SmI measures the submodularity
of a function at a location set. Hence, the SmI computed at each greedy selection captures the “local”
submodularity of the function. The central insight gained from this experiment is that, for a function
lacking general submodularity, such as the objective function of OPT2, it can be quasi-submodular
(SmI ≤ 0, SmI ≈ 0) or super-submodular (SmI > 0) at different locations. Accordingly the
performance guarantee can be either larger or smaller than 1− 1/e, depending on the values of SmI.

Application: Causal Structure Learning The greedy method for subset selection can be used
in many situations. Here we briefly illustrate the structure learning application based on covariates
selection. As is detailed in the supplementary material and [20], one can show that the causal structure
learning problem can be reduces to solving argmaxS⊆V,|S|≤k I(Sn → Xn

i ) for each node i ∈ V ,
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assuming maximal in degree is bounded by k for all nodes. Since the above problem is exactly the
covariate selection considered in this work, we can reconstruct the causal structure for a network of
random processes by simply using the greedy heuristic for each node.

Figure 3 and Figure 4 illustrate the structure learning results on D1 and D2, respectively. In both two
figures, the left subfigure is the ground truth structure, i.e., the dynamic Bayesian networks that are
used in the data generation. Note that each node in the figure represents a random process, and an
edge from node i to j indicates a causal (including both simultaneous and historical) influence. The
subfigure on the right shows the reconstructed causal graph. Comparing two subfigures in Figure 3,
we observe that the simple structure learning method performs almost flawlessly. In fact, only the
edge 6 → 4 is miss detected. On the larger case D2 with 35 processes, the method still works
relatively well, correctly reconstructing 82.69% causal relations. Given that only the maximal in
degree for all nodes is assumed a priori, these results not only justify the greedy approximation for
the subset selection, but also demonstrate its effectiveness in causal structure learning applications.
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Reconstructed causal graph (right), D1 dataset
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Reconstructed causal graph (right), D2 dataset

6 Conclusion

Motivated by the problems of source detection and causal covariate selection, we start with two for-
mulations of directed information based subset selection, and then we provide detailed submodularity
analysis for both of the objective functions. To extend the greedy heuristics to possibly non-monotonic,
approximately submodular functions, we introduce an novel notion, namely submodularity index, to
characterize the “degree” of submodularity for general set functions. More importantly, we show that
with SmI, the theoretical performance guarantee of greedy heuristic can be naturally extended to a
much broader class of problems. We also point out several bounds and techniques that can be used to
calculate SmI efficiently for the objectives under consideration. Experimental results on the synthesis
and real data sets reaffirmed our theoretical findings, and also demonstrated the effectiveness of
solving subset selection for learning causal structures.
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