9,145 research outputs found

    A Strong Edge-Coloring of Graphs with Maximum Degree 4 Using 22 Colors

    Full text link
    In 1985, Erd\H{o}s and Ne\'{s}etril conjectured that the strong edge-coloring number of a graph is bounded above by 5/4Ξ”2{5/4}\Delta^2 when Ξ”\Delta is even and 1/4(5Ξ”2βˆ’2Ξ”+1){1/4}(5\Delta^2-2\Delta+1) when Ξ”\Delta is odd. They gave a simple construction which requires this many colors. The conjecture has been verified for Δ≀3\Delta\leq 3. For Ξ”=4\Delta=4, the conjectured bound is 20. Previously, the best known upper bound was 23 due to Horak. In this paper we give an algorithm that uses at most 22 colors.Comment: 9 pages, 4 figure

    Approximating the Norms of Graph Spanners

    Get PDF

    Optimal Vertex Fault Tolerant Spanners (for fixed stretch)

    Full text link
    A kk-spanner of a graph GG is a sparse subgraph HH whose shortest path distances match those of GG up to a multiplicative error kk. In this paper we study spanners that are resistant to faults. A subgraph HβŠ†GH \subseteq G is an ff vertex fault tolerant (VFT) kk-spanner if Hβˆ–FH \setminus F is a kk-spanner of Gβˆ–FG \setminus F for any small set FF of ff vertices that might "fail." One of the main questions in the area is: what is the minimum size of an ff fault tolerant kk-spanner that holds for all nn node graphs (as a function of ff, kk and nn)? This question was first studied in the context of geometric graphs [Levcopoulos et al. STOC '98, Czumaj and Zhao SoCG '03] and has more recently been considered in general undirected graphs [Chechik et al. STOC '09, Dinitz and Krauthgamer PODC '11]. In this paper, we settle the question of the optimal size of a VFT spanner, in the setting where the stretch factor kk is fixed. Specifically, we prove that every (undirected, possibly weighted) nn-node graph GG has a (2kβˆ’1)(2k-1)-spanner resilient to ff vertex faults with Ok(f1βˆ’1/kn1+1/k)O_k(f^{1 - 1/k} n^{1 + 1/k}) edges, and this is fully optimal (unless the famous Erdos Girth Conjecture is false). Our lower bound even generalizes to imply that no data structure capable of approximating distGβˆ–F(s,t)dist_{G \setminus F}(s, t) similarly can beat the space usage of our spanner in the worst case. We also consider the edge fault tolerant (EFT) model, defined analogously with edge failures rather than vertex failures. We show that the same spanner upper bound applies in this setting. Our data structure lower bound extends to the case k=2k=2 (and hence we close the EFT problem for 33-approximations), but it falls to Ξ©(f1/2βˆ’1/(2k)β‹…n1+1/k)\Omega(f^{1/2 - 1/(2k)} \cdot n^{1 + 1/k}) for kβ‰₯3k \ge 3. We leave it as an open problem to close this gap.Comment: To appear in SODA 201
    • …
    corecore