2,642 research outputs found

    ActiveRemediation: The Search for Lead Pipes in Flint, Michigan

    Full text link
    We detail our ongoing work in Flint, Michigan to detect pipes made of lead and other hazardous metals. After elevated levels of lead were detected in residents' drinking water, followed by an increase in blood lead levels in area children, the state and federal governments directed over $125 million to replace water service lines, the pipes connecting each home to the water system. In the absence of accurate records, and with the high cost of determining buried pipe materials, we put forth a number of predictive and procedural tools to aid in the search and removal of lead infrastructure. Alongside these statistical and machine learning approaches, we describe our interactions with government officials in recommending homes for both inspection and replacement, with a focus on the statistical model that adapts to incoming information. Finally, in light of discussions about increased spending on infrastructure development by the federal government, we explore how our approach generalizes beyond Flint to other municipalities nationwide.Comment: 10 pages, 10 figures, To appear in KDD 2018, For associated promotional video, see https://www.youtube.com/watch?v=YbIn_axYu9

    Detection of arbitrarily-shaped clusters using a neighbor-expanding approach: A case study on murine typhus in South Texas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kulldorff's spatial scan statistic has been one of the most widely used statistical methods for automatic detection of clusters in spatial data. One limitation of this method lies in the fact that it has to rely on scan windows with predefined shapes in the search process, and therefore it cannot detect cluster with arbitrary shapes. We employ a new neighbor-expanding approach and introduce two new algorithms to detect cluster with arbitrary shapes in spatial data. These two algorithms are called the maximum-likelihood-first (MLF) algorithm and non-greedy growth (NGG) algorithm. We then compare the performance of these two new algorithms with the spatial scan statistic (SaTScan), Tango's flexibly shaped spatial scan statistic (FlexScan), and Duczmal's simulated annealing (SA) method using two datasets. Furthermore, we utilize the methods to examine clusters of murine typhus cases in South Texas from 1996 to 2006.</p> <p>Result</p> <p>When compared with the SaTScan and FlexScan method, the two new algorithms were more flexible and sensitive in detecting the clusters with arbitrary shapes in the test datasets. Clusters detected by the MLF algorithm are statistically more significant than those detected by the NGG algorithm. However, the NGG algorithm appears to be more stable when there are no extreme cluster patterns in the data. For the murine typhus data in South Texas, a large portion of the detected clusters were located in coastal counties where environmental conditions and socioeconomic status of some population groups were at a disadvantage when compared with those in other counties with no clusters of murine typhus cases.</p> <p>Conclusion</p> <p>The two new algorithms are effective in detecting the location and boundary of spatial clusters with arbitrary shapes. Additional research is needed to better understand the etiology of the concentration of murine typhus cases in some counties in south Texas.</p
    corecore