208 research outputs found

    Grassmann Learning for Recognition and Classification

    Get PDF
    Computational performance associated with high-dimensional data is a common challenge for real-world classification and recognition systems. Subspace learning has received considerable attention as a means of finding an efficient low-dimensional representation that leads to better classification and efficient processing. A Grassmann manifold is a space that promotes smooth surfaces, where points represent subspaces and the relationship between points is defined by a mapping of an orthogonal matrix. Grassmann learning involves embedding high dimensional subspaces and kernelizing the embedding onto a projection space where distance computations can be effectively performed. In this dissertation, Grassmann learning and its benefits towards action classification and face recognition in terms of accuracy and performance are investigated and evaluated. Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP) are proposed as Grassmann inspired subspace learning algorithms. GSR is a novel subspace learning algorithm that combines the benefits of Grassmann manifolds with sparse representations using least squares loss §¤1-norm minimization for improved classification. GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann manifolds and Spectral Regression in a framework that supports high discrimination between classes and achieves computational benefits by using manifold modeling and avoiding eigen-decomposition. The effectiveness of GSR and GRASP is demonstrated for computationally intensive classification problems: (a) multi-view action classification using the IXMAS Multi-View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended Yale Face Database B (YALE). Additional contributions include the definition of Motion History Surfaces (MHS) and Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video sequences and 3D depth sequences. An in-depth analysis of Grassmann metrics is applied on high dimensional data with different levels of noise and data distributions which reveals that standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold. Finally, an extensive performance analysis is made that supports Grassmann subspace learning as an effective approach for classification and recognition

    Image patch analysis of sunspots and active regions. II. Clustering via matrix factorization

    Full text link
    Separating active regions that are quiet from potentially eruptive ones is a key issue in Space Weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature prevents systematic studies of an active region's evolution for example. We introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. We use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches. Two factorizations can be compared via the definition of appropriate metrics on the resulting factors. The distances obtained from these metrics are then used to cluster the active regions. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the RR value. We provide some recommendations for which metrics, matrix factorization techniques, and regions of interest to use to study active regions.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC). 33 pages, 12 figure

    Building Deep Networks on Grassmann Manifolds

    Full text link
    Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re-orthonormalization layers to normalize the resulting matrices, study projection pooling layers to reduce the model complexity in the Grassmannian context, and devise projection mapping layers to respect Grassmannian geometry and meanwhile achieve Euclidean forms for regular output layers. To train the Grassmann networks, we exploit a stochastic gradient descent setting on manifolds of the connection weights, and study a matrix generalization of backpropagation to update the structured data. The evaluations on three visual recognition tasks show that our Grassmann networks have clear advantages over existing Grassmann learning methods, and achieve results comparable with state-of-the-art approaches.Comment: AAAI'18 pape

    Algorithms for feature selection and pattern recognition on Grassmann manifolds

    Get PDF
    Includes bibliographical references.2015 Summer.This dissertation presents three distinct application-driven research projects united by ideas and topics from geometric data analysis, optimization, computational topology, and machine learning. We first consider hyperspectral band selection problem solved by using sparse support vector machines (SSVMs). A supervised embedded approach is proposed using the property of SSVMs to exhibit a model structure that includes a clearly identifiable gap between zero and non-zero feature vector weights that permits important bands to be definitively selected in conjunction with the classification problem. An SSVM is trained using bootstrap aggregating to obtain a sample of SSVM models to reduce variability in the band selection process. This preliminary sample approach for band selection is followed by a secondary band selection which involves retraining the SSVM to further reduce the set of bands retained. We propose and compare three adaptations of the SSVM band selection algorithm for the multiclass problem. We illustrate the performance of these methods on two benchmark hyperspectral data sets. Second, we propose an approach for capturing the signal variability in data using the framework of the Grassmann manifold (Grassmannian). Labeled points from each class are sampled and used to form abstract points on the Grassmannian. The resulting points have representations as orthonormal matrices and as such do not reside in Euclidean space in the usual sense. There are a variety of metrics which allow us to determine distance matrices that can be used to realize the Grassmannian as an embedding in Euclidean space. Multidimensional scaling (MDS) determines a low dimensional Euclidean embedding of the manifold, preserving or approximating the Grassmannian geometry based on the distance measure. We illustrate that we can achieve an isometric embedding of the Grassmann manifold using the chordal metric while this is not the case with other distances. However, non-isometric embeddings generated by using the smallest principal angle pseudometric on the Grassmannian lead to the best classification results: we observe that as the dimension of the Grassmannian grows, the accuracy of the classification grows to 100% in binary classification experiments. To build a classification model, we use SSVMs to perform simultaneous dimension selection. The resulting classifier selects a subset of dimensions of the embedding without loss in classification performance. Lastly, we present an application of persistent homology to the detection of chemical plumes in hyperspectral movies. The pixels of the raw hyperspectral data cubes are mapped to the geometric framework of the Grassmann manifold where they are analyzed, contrasting our approach with the more standard framework in Euclidean space. An advantage of this approach is that it allows the time slices in a hyperspectral movie to be collapsed to a sequence of points in such a way that some of the key structure within and between the slices is encoded by the points on the Grassmannian. This motivates the search for topological structure, associated with the evolution of the frames of a hyperspectral movie, within the corresponding points on the manifold. The proposed framework affords the processing of large data sets, such as the hyperspectral movies explored in this investigation, while retaining valuable discriminative information. For a particular choice of a distance metric on the Grassmannian, it is possible to generate topological signals that capture changes in the scene after a chemical release
    • …
    corecore