142 research outputs found

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    On the Minimum Distance of Subspace Codes Generated by Linear Cellular Automata

    Get PDF
    Motivated by applications to noncoherent network coding, we study subspace codes defined by sets of linear cellular automata (CA). As a first remark, we show that a family of linear CA where the local rules have the same diameter—and thus the associated polynomials have the same degree—induces a Grassmannian code. Then, we prove that the minimum distance of such a code is determined by the maximum degree occurring among the pairwise greatest common divisors (GCD) of the polynomials in the family. Finally, we consider the setting where all such polynomials have the same GCD, and determine the cardinality of the corresponding Grassmannian code. As a particular case, we show that if all polynomials in the family are pairwise coprime, the resulting Grassmannian code has the highest minimum distance possible.</p

    Convolutional Codes in Rank Metric with Application to Random Network Coding

    Full text link
    Random network coding recently attracts attention as a technique to disseminate information in a network. This paper considers a non-coherent multi-shot network, where the unknown and time-variant network is used several times. In order to create dependencies between the different shots, particular convolutional codes in rank metric are used. These codes are so-called (partial) unit memory ((P)UM) codes, i.e., convolutional codes with memory one. First, distance measures for convolutional codes in rank metric are shown and two constructions of (P)UM codes in rank metric based on the generator matrices of maximum rank distance codes are presented. Second, an efficient error-erasure decoding algorithm for these codes is presented. Its guaranteed decoding radius is derived and its complexity is bounded. Finally, it is shown how to apply these codes for error correction in random linear and affine network coding.Comment: presented in part at Netcod 2012, submitted to IEEE Transactions on Information Theor

    Covering Grassmannian Codes: Bounds and Constructions

    Full text link
    Grassmannian Gq(n,k)\mathcal{G}_q(n,k) is the set of all kk-dimensional subspaces of the vector space Fqn.\mathbb{F}_q^n. Recently, Etzion and Zhang introduced a new notion called covering Grassmannian code which can be used in network coding solutions for generalized combination networks. An α\alpha-(n,k,δ)qc(n,k,\delta)_q^c covering Grassmannian code C\mathcal{C} is a subset of Gq(n,k)\mathcal{G}_q(n,k) such that every set of α\alpha codewords of C\mathcal{C} spans a subspace of dimension at least δ+k\delta +k in Fqn.\mathbb{F}_q^n. In this paper, we derive new upper and lower bounds on the size of covering Grassmannian codes. These bounds improve and extend the parameter range of known bounds.Comment: 17 page

    On the Gap between Scalar and Vector Solutions of Generalized Combination Networks

    Full text link
    We study scalar-linear and vector-linear solutions to the generalized combination network. We derive new upper and lower bounds on the maximum number of nodes in the middle layer, depending on the network parameters. These bounds improve and extend the parameter range of known bounds. Using these new bounds we present a general lower bound on the gap in the alphabet size between scalar-linear and vector-linear solutions.Comment: 6 pages, 1 figures, accepted by ISIT 2020, revised according to the review

    The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning

    Get PDF
    A diverse number of tasks in computer vision and machine learning enjoy from representations of data that are compact yet discriminative, informative and robust to critical measurements. Two notable representations are offered by Region Covariance Descriptors (RCovD) and linear subspaces which are naturally analyzed through the manifold of Symmetric Positive Definite (SPD) matrices and the Grassmann manifold, respectively, two widely used types of Riemannian manifolds in computer vision. As our first objective, we examine image and video-based recognition applications where the local descriptors have the aforementioned Riemannian structures, namely the SPD or linear subspace structure. Initially, we provide a solution to compute Riemannian version of the conventional Vector of Locally aggregated Descriptors (VLAD), using geodesic distance of the underlying manifold as the nearness measure. Next, by having a closer look at the resulting codes, we formulate a new concept which we name Local Difference Vectors (LDV). LDVs enable us to elegantly expand our Riemannian coding techniques to any arbitrary metric as well as provide intrinsic solutions to Riemannian sparse coding and its variants when local structured descriptors are considered. We then turn our attention to two special types of covariance descriptors namely infinite-dimensional RCovDs and rank-deficient covariance matrices for which the underlying Riemannian structure, i.e. the manifold of SPD matrices is out of reach to great extent. %Generally speaking, infinite-dimensional RCovDs offer better discriminatory power over their low-dimensional counterparts. To overcome this difficulty, we propose to approximate the infinite-dimensional RCovDs by making use of two feature mappings, namely random Fourier features and the Nystrom method. As for the rank-deficient covariance matrices, unlike most existing approaches that employ inference tools by predefined regularizers, we derive positive definite kernels that can be decomposed into the kernels on the cone of SPD matrices and kernels on the Grassmann manifolds and show their effectiveness for image set classification task. Furthermore, inspired by attractive properties of Riemannian optimization techniques, we extend the recently introduced Keep It Simple and Straightforward MEtric learning (KISSME) method to the scenarios where input data is non-linearly distributed. To this end, we make use of the infinite dimensional covariance matrices and propose techniques towards projecting on the positive cone in a Reproducing Kernel Hilbert Space (RKHS). We also address the sensitivity issue of the KISSME to the input dimensionality. The KISSME algorithm is greatly dependent on Principal Component Analysis (PCA) as a preprocessing step which can lead to difficulties, especially when the dimensionality is not meticulously set. To address this issue, based on the KISSME algorithm, we develop a Riemannian framework to jointly learn a mapping performing dimensionality reduction and a metric in the induced space. Lastly, in line with the recent trend in metric learning, we devise end-to-end learning of a generic deep network for metric learning using our derivation

    Consistent Flag Codes

    Get PDF
    In this paper we study flag codes on Fnq, being Fq the finite field with q elements. Special attention is given to the connection between the parameters and properties of a flag code and the ones of a family of constant dimension codes naturally associated to it (the projected codes). More precisely, we focus on consistent flag codes, that is, flag codes whose distance and size are completely determined by their projected codes. We explore some aspects of this family of codes and present examples of them by generalizing the concepts of equidistant and sunflower subspace code to the flag codes setting. Finally, we present a decoding algorithm for consistent flag codes that fully exploits the consistency condition.The authors receive financial support from Ministerio de Ciencia e Innovación (PID2019-108668GB-I00). The second author is supported by Generalitat Valenciana and Fondo Social Europeo (ACIF/2018/196)
    corecore