61,914 research outputs found

    The Connectivity and the Harary Index of a Graph

    Full text link
    The Harary index of a graph is defined as the sum of reciprocals of distances between all pairs of vertices of the graph. In this paper we provide an upper bound of the Harary index in terms of the vertex or edge connectivity of a graph. We characterize the unique graph with maximum Harary index among all graphs with given number of cut vertices or vertex connectivity or edge connectivity. In addition we also characterize the extremal graphs with the second maximum Harary index among the graphs with given vertex connectivity

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=vV(G)deg(v)ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    On maximum Estrada indices of graphs with given parameters

    Get PDF
    AbstractFor a graph G with eigenvalues λ1,λ2,…,λn, its Estrada index is defined as EE(G)=∑i=1neλi. We determine the unique graphs with maximum Estrada indices among graphs with given number of cut vertices, connectivity, and edge connectivity, respectively

    On Maximum Signless Laplacian Estrada Indices of Graphs with Given Parameters

    Full text link
    Signless Laplacian Estrada index of a graph GG, defined as SLEE(G)=i=1neqiSLEE(G)=\sum^{n}_{i=1}e^{q_i}, where q1,q2,,qnq_1, q_2, \cdots, q_n are the eigenvalues of the matrix Q(G)=D(G)+A(G)\mathbf{Q}(G)=\mathbf{D}(G)+\mathbf{A}(G). We determine the unique graphs with maximum signless Laplacian Estrada indices among the set of graphs with given number of cut edges, pendent vertices, (vertex) connectivity and edge connectivity.Comment: 14 pages, 3 figure
    corecore