2,079 research outputs found

    Transitivity conditions in infinite graphs

    Full text link
    We study transitivity properties of graphs with more than one end. We completely classify the distance-transitive such graphs and, for all k3k \geq 3, the kk-CS-transitive such graphs.Comment: 20 page

    Clique trees of infinite locally finite chordal graphs

    Get PDF
    We investigate clique trees of infinite locally finite chordal graphs. Our main contribution is a bijection between the set of clique trees and the product of local finite families of finite trees. Even more, the edges of a clique tree are in bijection with the edges of the corresponding collection of finite trees. This allows us to enumerate the clique trees of a chordal graph and extend various classic characterisations of clique trees to the infinite setting

    Polynomial-time algorithm for Maximum Weight Independent Set on P6P_6-free graphs

    Full text link
    In the classic Maximum Weight Independent Set problem we are given a graph GG with a nonnegative weight function on vertices, and the goal is to find an independent set in GG of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any P6P_6-free graph, that is, a graph that has no path on 66 vertices as an induced subgraph. This improves the polynomial-time algorithm on P5P_5-free graphs of Lokshtanov et al. (SODA 2014), and the quasipolynomial-time algorithm on P6P_6-free graphs of Lokshtanov et al (SODA 2016). The main technical contribution leading to our main result is enumeration of a polynomial-size family F\mathcal{F} of vertex subsets with the following property: for every maximal independent set II in the graph, F\mathcal{F} contains all maximal cliques of some minimal chordal completion of GG that does not add any edge incident to a vertex of II

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Homogeneous sets, clique-separators, critical graphs, and optimal χ\chi-binding functions

    Full text link
    Given a set H\mathcal{H} of graphs, let fH ⁣:N>0N>0f_\mathcal{H}^\star\colon \mathbb{N}_{>0}\to \mathbb{N}_{>0} be the optimal χ\chi-binding function of the class of H\mathcal{H}-free graphs, that is, fH(ω)=max{χ(G):G is H-free, ω(G)=ω}.f_\mathcal{H}^\star(\omega)=\max\{\chi(G): G\text{ is } \mathcal{H}\text{-free, } \omega(G)=\omega\}. In this paper, we combine the two decomposition methods by homogeneous sets and clique-separators in order to determine optimal χ\chi-binding functions for subclasses of P5P_5-free graphs and of (C5,C7,)(C_5,C_7,\ldots)-free graphs. In particular, we prove the following for each ω1\omega\geq 1: (i)  f{P5,banner}(ω)=f3K1(ω)Θ(ω2/log(ω)),\ f_{\{P_5,banner\}}^\star(\omega)=f_{3K_1}^\star(\omega)\in \Theta(\omega^2/\log(\omega)), (ii) $\ f_{\{P_5,co-banner\}}^\star(\omega)=f^\star_{\{2K_2\}}(\omega)\in\mathcal{O}(\omega^2),(iii) (iii) \ f_{\{C_5,C_7,\ldots,banner\}}^\star(\omega)=f^\star_{\{C_5,3K_1\}}(\omega)\notin \mathcal{O}(\omega),and(iv) and (iv) \ f_{\{P_5,C_4\}}^\star(\omega)=\lceil(5\omega-1)/4\rceil.Wealsocharacterise,foreachofourconsideredgraphclasses,allgraphs We also characterise, for each of our considered graph classes, all graphs Gwith with \chi(G)>\chi(G-u)foreach for each u\in V(G).Fromthesestructuralresults,wecanproveReedsconjecturerelatingchromaticnumber,cliquenumber,andmaximumdegreeofagraphfor. From these structural results, we can prove Reed's conjecture -- relating chromatic number, clique number, and maximum degree of a graph -- for (P_5,banner)$-free graphs

    Fixed-Parameter Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset

    Full text link
    Given a directed graph GG, a set of kk terminals and an integer pp, the \textsc{Directed Vertex Multiway Cut} problem asks if there is a set SS of at most pp (nonterminal) vertices whose removal disconnects each terminal from all other terminals. \textsc{Directed Edge Multiway Cut} is the analogous problem where SS is a set of at most pp edges. These two problems indeed are known to be equivalent. A natural generalization of the multiway cut is the \emph{multicut} problem, in which we want to disconnect only a set of kk given pairs instead of all pairs. Marx (Theor. Comp. Sci. 2006) showed that in undirected graphs multiway cut is fixed-parameter tractable (FPT) parameterized by pp. Marx and Razgon (STOC 2011) showed that undirected multicut is FPT and directed multicut is W[1]-hard parameterized by pp. We complete the picture here by our main result which is that both \textsc{Directed Vertex Multiway Cut} and \textsc{Directed Edge Multiway Cut} can be solved in time 22O(p)nO(1)2^{2^{O(p)}}n^{O(1)}, i.e., FPT parameterized by size pp of the cutset of the solution. This answers an open question raised by Marx (Theor. Comp. Sci. 2006) and Marx and Razgon (STOC 2011). It follows from our result that \textsc{Directed Multicut} is FPT for the case of k=2k=2 terminal pairs, which answers another open problem raised in Marx and Razgon (STOC 2011)
    corecore