20 research outputs found

    Decomposing Berge graphs

    No full text
    URL des Cahiers : https://halshs.archives-ouvertes.fr/CAHIERS-MSECahiers de la Maison des Sciences Economiques 2006.02 - ISSN 1624-0340A hole in a graph is an induced cycle on at least four vertices. A graph is Berge if it has no old hole and if its complement has no odd hole. In 2002, Chudnovsky, Robertson, Seymour and Thomas proved a decomposition theorem for Berge graphs saying that every Berge graph either is in a well understood basic class or has some kind of decomposition. Then, Chudnovsky proved a stronger theorem by restricting the allowed decompositions and another theorem where some decompositions were restricted while other decompositions were extended. We prove here a theorem stronger than all those previously known results. Our proof uses at an essential step one of the theorems of Chudnovsky.Un trou dans un graphe est un cycle induit avec au moins quatre sommets. Un graphe est de Berge si ni lui ni son complémentaire ne contiennent de trou impair. En 2002, Chudnovsky, Robertson, Seymour et Thomas ont prouvé un théorème de décomposition affirmant que tout graphe de Berge, ou bien appartient à une classe basique bien comprise, ou bien admet un certain type de décomposition. Puis Chudnovsky a prouvé un théorème plus fort en restreignant les décompositions autorisées. Chudnovsky a aussi prouvé un autre théorème où certaines décompositions sont restreintes tandis que d'autres sont étendues. Nous prouvons ici un théorème plus fort que ces trois résultats, en ce sens qu'il les implique facilement. Notre preuve utilise l'un des théorèmes de Chudnovsky

    The Erd\H{o}s-Hajnal Conjecture for Paths and Antipaths

    Get PDF
    We prove that for every k, there exists ck>0c_k>0 such that every graph G on n vertices not inducing a path PkP_k and its complement contains a clique or a stable set of size nckn^{c_k}

    Even pairs in Berge graphs

    Get PDF
    Abstract Our proof (with Robertson and Thomas) of the strong perfect graph conjecture ran to 179 pages of dense matter; and the most impenetrable part was the final 55 pages, on what we called "wheel systems". In this paper we give a replacement for those 55 pages, much easier and shorter, using "even pairs". This is based on an approach of Maffray and Trotignon

    Clique-Stable Set separation in perfect graphs with no balanced skew-partitions

    Get PDF
    Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set Separation in a non-hereditary subclass of perfect graphs. A cut (B,W) of G (a bipartition of V(G)) separates a clique K and a stable set S if K⊆BK\subseteq B and S⊆WS\subseteq W. A Clique-Stable Set Separator is a family of cuts such that for every clique K, and for every stable set S disjoint from K, there exists a cut in the family that separates K and S. Given a class of graphs, the question is to know whether every graph of the class admits a Clique-Stable Set Separator containing only polynomially many cuts. It is open for the class of all graphs, and also for perfect graphs, which was Yannakakis' original question. Here we investigate on perfect graphs with no balanced skew-partition; the balanced skew-partition was introduced in the proof of the Strong Perfect Graph Theorem. Recently, Chudnovsky, Trotignon, Trunck and Vuskovic proved that forbidding this unfriendly decomposition permits to recursively decompose Berge graphs using 2-join and complement 2-join until reaching a basic graph, and they found an efficient combinatorial algorithm to color those graphs. We apply their decomposition result to prove that perfect graphs with no balanced skew-partition admit a quadratic-size Clique-Stable Set Separator, by taking advantage of the good behavior of 2-join with respect to this property. We then generalize this result and prove that the Strong Erdos-Hajnal property holds in this class, which means that every such graph has a linear-size biclique or complement biclique. This property does not hold for all perfect graphs (Fox 2006), and moreover when the Strong Erdos-Hajnal property holds in a hereditary class of graphs, then both the Erdos-Hajnal property and the polynomial Clique-Stable Set Separation hold.Comment: arXiv admin note: text overlap with arXiv:1308.644
    corecore