54,839 research outputs found

    Practical Minimum Cut Algorithms

    Full text link
    The minimum cut problem for an undirected edge-weighted graph asks us to divide its set of nodes into two blocks while minimizing the weight sum of the cut edges. Here, we introduce a linear-time algorithm to compute near-minimum cuts. Our algorithm is based on cluster contraction using label propagation and Padberg and Rinaldi's contraction heuristics [SIAM Review, 1991]. We give both sequential and shared-memory parallel implementations of our algorithm. Extensive experiments on both real-world and generated instances show that our algorithm finds the optimal cut on nearly all instances significantly faster than other state-of-the-art algorithms while our error rate is lower than that of other heuristic algorithms. In addition, our parallel algorithm shows good scalability

    The Peculiar Phase Structure of Random Graph Bisection

    Full text link
    The mincut graph bisection problem involves partitioning the n vertices of a graph into disjoint subsets, each containing exactly n/2 vertices, while minimizing the number of "cut" edges with an endpoint in each subset. When considered over sparse random graphs, the phase structure of the graph bisection problem displays certain familiar properties, but also some surprises. It is known that when the mean degree is below the critical value of 2 log 2, the cutsize is zero with high probability. We study how the minimum cutsize increases with mean degree above this critical threshold, finding a new analytical upper bound that improves considerably upon previous bounds. Combined with recent results on expander graphs, our bound suggests the unusual scenario that random graph bisection is replica symmetric up to and beyond the critical threshold, with a replica symmetry breaking transition possibly taking place above the threshold. An intriguing algorithmic consequence is that although the problem is NP-hard, we can find near-optimal cutsizes (whose ratio to the optimal value approaches 1 asymptotically) in polynomial time for typical instances near the phase transition.Comment: substantially revised section 2, changed figures 3, 4 and 6, made minor stylistic changes and added reference

    Acyclic Subgraphs of Planar Digraphs

    Get PDF
    An acyclic set in a digraph is a set of vertices that induces an acyclic subgraph. In 2011, Harutyunyan conjectured that every planar digraph on nn vertices without directed 2-cycles possesses an acyclic set of size at least 3n/53n/5. We prove this conjecture for digraphs where every directed cycle has length at least 8. More generally, if gg is the length of the shortest directed cycle, we show that there exists an acyclic set of size at least (13/g)n(1 - 3/g)n.Comment: 9 page

    A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection

    Full text link
    Given an undirected graph with edge costs and node weights, the minimum bisection problem asks for a partition of the nodes into two parts of equal weight such that the sum of edge costs between the parts is minimized. We give a polynomial time bicriteria approximation scheme for bisection on planar graphs. Specifically, let WW be the total weight of all nodes in a planar graph GG. For any constant ε>0\varepsilon > 0, our algorithm outputs a bipartition of the nodes such that each part weighs at most W/2+εW/2 + \varepsilon and the total cost of edges crossing the partition is at most (1+ε)(1+\varepsilon) times the total cost of the optimal bisection. The previously best known approximation for planar minimum bisection, even with unit node weights, was O(logn)O(\log n). Our algorithm actually solves a more general problem where the input may include a target weight for the smaller side of the bipartition.Comment: To appear in STOC 201

    Measuring and Understanding Throughput of Network Topologies

    Full text link
    High throughput is of particular interest in data center and HPC networks. Although myriad network topologies have been proposed, a broad head-to-head comparison across topologies and across traffic patterns is absent, and the right way to compare worst-case throughput performance is a subtle problem. In this paper, we develop a framework to benchmark the throughput of network topologies, using a two-pronged approach. First, we study performance on a variety of synthetic and experimentally-measured traffic matrices (TMs). Second, we show how to measure worst-case throughput by generating a near-worst-case TM for any given topology. We apply the framework to study the performance of these TMs in a wide range of network topologies, revealing insights into the performance of topologies with scaling, robustness of performance across TMs, and the effect of scattered workload placement. Our evaluation code is freely available
    corecore