560,192 research outputs found

    Universal targets for homomorphisms of edge-colored graphs

    Full text link
    A kk-edge-colored graph is a finite, simple graph with edges labeled by numbers 1,…,k1,\ldots,k. A function from the vertex set of one kk-edge-colored graph to another is a homomorphism if the endpoints of any edge are mapped to two different vertices connected by an edge of the same color. Given a class F\mathcal{F} of graphs, a kk-edge-colored graph H\mathbb{H} (not necessarily with the underlying graph in F\mathcal{F}) is kk-universal for F\mathcal{F} when any kk-edge-colored graph with the underlying graph in F\mathcal{F} admits a homomorphism to H\mathbb{H}. We characterize graph classes that admit kk-universal graphs. For such classes, we establish asymptotically almost tight bounds on the size of the smallest universal graph. For a nonempty graph GG, the density of GG is the maximum ratio of the number of edges to the number of vertices ranging over all nonempty subgraphs of GG. For a nonempty class F\mathcal{F} of graphs, D(F)D(\mathcal{F}) denotes the density of F\mathcal{F}, that is the supremum of densities of graphs in F\mathcal{F}. The main results are the following. The class F\mathcal{F} admits kk-universal graphs for k≥2k\geq2 if and only if there is an absolute constant that bounds the acyclic chromatic number of any graph in F\mathcal{F}. For any such class, there exists a constant cc, such that for any k≥2k \geq 2, the size of the smallest kk-universal graph is between kD(F)k^{D(\mathcal{F})} and ck⌈D(F)⌉ck^{\lceil D(\mathcal{F})\rceil}. A connection between the acyclic coloring and the existence of universal graphs was first observed by Alon and Marshall (Journal of Algebraic Combinatorics, 8(1):5-13, 1998). One of their results is that for planar graphs, the size of the smallest kk-universal graph is between k3+3k^3+3 and 5k45k^4. Our results yield that there exists a constant cc such that for all kk, this size is bounded from above by ck3ck^3

    Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

    Full text link
    A complete classification of the computational complexity of the fixed-point existence problem for boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NP-complete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.Comment: 17 pages; this version corrects an error/typo in the 2008/01/24 versio
    • …
    corecore