42 research outputs found

    Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data

    Full text link
    We propose an efficient family of algorithms to learn the parameters of a Bayesian network from incomplete data. In contrast to textbook approaches such as EM and the gradient method, our approach is non-iterative, yields closed form parameter estimates, and eliminates the need for inference in a Bayesian network. Our approach provides consistent parameter estimates for missing data problems that are MCAR, MAR, and in some cases, MNAR. Empirically, our approach is orders of magnitude faster than EM (as our approach requires no inference). Given sufficient data, we learn parameters that can be orders of magnitude more accurate

    Towards a Transportable Causal Network Model Based on Observational Healthcare Data

    Get PDF
    Over the last decades, many prognostic models based on artificial intelligence techniques have been used to provide detailed predictions in healthcare. Unfortunately, the real-world observational data used to train and validate these models are almost always affected by biases that can strongly impact the outcomes validity: two examples are values missing not-at-random and selection bias. Addressing them is a key element in achieving transportability and in studying the causal relationships that are critical in clinical decision making, going beyond simpler statistical approaches based on probabilistic association. In this context, we propose a novel approach that combines selection diagrams, missingness graphs, causal discovery and prior knowledge into a single graphical model to estimate the cardiovascular risk of adolescent and young females who survived breast cancer. We learn this model from data comprising two different cohorts of patients. The resulting causal network model is validated by expert clinicians in terms of risk assessment, accuracy and explainability, and provides a prognostic model that outperforms competing machine learning methods.</p

    Greedy structure learning from data that contains systematic missing values

    Get PDF
    Learning from data that contain missing values represents a common phenomenon in many domains. Relatively few Bayesian Network structure learning algorithms account for missing data, and those that do tend to rely on standard approaches that assume missing data are missing at random, such as the Expectation-Maximisation algorithm. Because missing data are often systematic, there is a need for more pragmatic methods that can effectively deal with data sets containing missing values not missing at random. The absence of approaches that deal with systematic missing data impedes the application of BN structure learning methods to real-world problems where missingness are not random. This paper describes three variants of greedy search structure learning that utilise pairwise deletion and inverse probability weighting to maximally leverage the observed data and to limit potential bias caused by missing values. The first two of the variants can be viewed as sub-versions of the third and best performing variant, but are important in their own in illustrating the successive improvements in learning accuracy. The empirical investigations show that the proposed approach outperforms the commonly used and state-of-the-art Structural EM algorithm, both in terms of learning accuracy and efficiency, as well as both when data are missing at random and not at random
    corecore