10,775 research outputs found

    Balancing for unstable nonlinear systems

    Get PDF
    A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By considering a past and future energy function for an unstable nonlinear system, the concept of these similarity invariants for linear systems is extended to nonlinear systems. Furthermore the relation of this balancing method with the previously obtained method of balancing the coprime factorization of an unstable nonlinear system is considered. Both methods are introduced with the aim of using it as a tool for model reductio

    A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality

    Get PDF
    Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions are provided which guarantee the global and local optimality of the obtained solutions. Extensive numerical results performed on both synthetic and real data sets suggest that the proposed algorithm converges quickly to a local minimum solution.Comment: IEEE Transactions on Signal Processing (to appear

    Supersymmetry and the formal loop space

    Get PDF
    For any algebraic super-manifold M we define the super-ind-scheme LM of formal loops and study the transgression map (Radon transform) on differential forms in this context. Applying this to the super-manifold M=SX, the spectrum of the de Rham complex of a manifold X, we obtain, in particular, that the transgression map for X is a quasi-isomorphism between the [2,3)-truncated de Rham complex of X and the additive part of the [1,2)-truncated de Rham complex of LX. The proof uses the super-manifold SSX and the action of the Lie superalgebra sl(1|2) on this manifold. This quasi-isomorphism result provides a crucial step in the classification of sheaves of chiral differential operators in terms of geometry of the formal loop space

    Strong Products of Hypergraphs: Unique Prime Factorization Theorems and Algorithms

    Full text link
    It is well-known that all finite connected graphs have a unique prime factor decomposition (PFD) with respect to the strong graph product which can be computed in polynomial time. Essential for the PFD computation is the construction of the so-called Cartesian skeleton of the graphs under investigation. In this contribution, we show that every connected thin hypergraph H has a unique prime factorization with respect to the normal and strong (hypergraph) product. Both products coincide with the usual strong graph product whenever H is a graph. We introduce the notion of the Cartesian skeleton of hypergraphs as a natural generalization of the Cartesian skeleton of graphs and prove that it is uniquely defined for thin hypergraphs. Moreover, we show that the Cartesian skeleton of hypergraphs can be determined in O(|E|^2) time and that the PFD can be computed in O(|V|^2|E|) time, for hypergraphs H = (V,E) with bounded degree and bounded rank
    • …
    corecore