10,517 research outputs found

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Look Who's Talking: Bipartite Networks as Representations of a Topic Model of New Zealand Parliamentary Speeches

    Get PDF
    Quantitative methods to measure the participation to parliamentary debate and discourse of elected Members of Parliament (MPs) and the parties they belong to are lacking. This is an exploratory study in which we propose the development of a new approach for a quantitative analysis of such participation. We utilize the New Zealand government's digital Hansard database to construct a topic model of parliamentary speeches consisting of nearly 40 million words in the period 2003-2016. A Latent Dirichlet Allocation topic model is implemented in order to reveal the thematic structure of our set of documents. This generative statistical model enables the detection of major themes or topics that are publicly discussed in the New Zealand parliament, as well as permitting their classification by MP. Information on topic proportions is subsequently analyzed using a combination of statistical methods. We observe patterns arising from time-series analysis of topic frequencies which can be related to specific social, economic and legislative events. We then construct a bipartite network representation, linking MPs to topics, for each of four parliamentary terms in this time frame. We build projected networks (onto the set of nodes represented by MPs) and proceed to the study of the dynamical changes of their topology, including community structure. By performing this longitudinal network analysis, we can observe the evolution of the New Zealand parliamentary topic network and its main parties in the period studied.Comment: 28 pages, 12 figures, 3 table
    • …
    corecore