6 research outputs found

    Blind Deconvolution of Sparse Graph Signals in the Presence of Perturbations

    Full text link
    Blind deconvolution over graphs involves using (observed) output graph signals to obtain both the inputs (sources) as well as the filter that drives (models) the graph diffusion process. This is an ill-posed problem that requires additional assumptions, such as the sources being sparse, to be solvable. This paper addresses the blind deconvolution problem in the presence of imperfect graph information, where the observed graph is a perturbed version of the (unknown) true graph. While not having perfect knowledge of the graph is arguably more the norm than the exception, the body of literature on this topic is relatively small. This is partly due to the fact that translating the uncertainty about the graph topology to standard graph signal processing tools (e.g. eigenvectors or polynomials of the graph) is a challenging endeavor. To address this limitation, we propose an optimization-based estimator that solves the blind identification in the vertex domain, aims at estimating the inverse of the generating filter, and accounts explicitly for additive graph perturbations. Preliminary numerical experiments showcase the effectiveness and potential of the proposed algorithm.Comment: Submitted to the 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024

    Compressive Recovery of Signals Defined on Perturbed Graphs

    Full text link
    Recovery of signals with elements defined on the nodes of a graph, from compressive measurements is an important problem, which can arise in various domains such as sensor networks, image reconstruction and group testing. In some scenarios, the graph may not be accurately known, and there may exist a few edge additions or deletions relative to a ground truth graph. Such perturbations, even if small in number, significantly affect the Graph Fourier Transform (GFT). This impedes recovery of signals which may have sparse representations in the GFT bases of the ground truth graph. We present an algorithm which simultaneously recovers the signal from the compressive measurements and also corrects the graph perturbations. We analyze some important theoretical properties of the algorithm. Our approach to correction for graph perturbations is based on model selection techniques such as cross-validation in compressed sensing. We validate our algorithm on signals which have a sparse representation in the GFT bases of many commonly used graphs in the network science literature. An application to compressive image reconstruction is also presented, where graph perturbations are modeled as undesirable graph edges linking pixels with significant intensity difference. In all experiments, our algorithm clearly outperforms baseline techniques which either ignore the perturbations or use first order approximations to the perturbations in the GFT bases.Comment: 18 pages, 15 figures. v2: Minor correction in ref [32

    Graph-based Learning under Perturbations via Total Least-Squares.

    No full text
    corecore