435 research outputs found

    Non-convex regularization in remote sensing

    Get PDF
    In this paper, we study the effect of different regularizers and their implications in high dimensional image classification and sparse linear unmixing. Although kernelization or sparse methods are globally accepted solutions for processing data in high dimensions, we present here a study on the impact of the form of regularization used and its parametrization. We consider regularization via traditional squared (2) and sparsity-promoting (1) norms, as well as more unconventional nonconvex regularizers (p and Log Sum Penalty). We compare their properties and advantages on several classification and linear unmixing tasks and provide advices on the choice of the best regularizer for the problem at hand. Finally, we also provide a fully functional toolbox for the community.Comment: 11 pages, 11 figure

    Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification

    Full text link
    Hyperspectral image (HSI) classification, which aims to assign an accurate label for hyperspectral pixels, has drawn great interest in recent years. Although low rank representation (LRR) has been used to classify HSI, its ability to segment each class from the whole HSI data has not been exploited fully yet. LRR has a good capacity to capture the underlying lowdimensional subspaces embedded in original data. However, there are still two drawbacks for LRR. First, LRR does not consider the local geometric structure within data, which makes the local correlation among neighboring data easily ignored. Second, the representation obtained by solving LRR is not discriminative enough to separate different data. In this paper, a novel locality and structure regularized low rank representation (LSLRR) model is proposed for HSI classification. To overcome the above limitations, we present locality constraint criterion (LCC) and structure preserving strategy (SPS) to improve the classical LRR. Specifically, we introduce a new distance metric, which combines both spatial and spectral features, to explore the local similarity of pixels. Thus, the global and local structures of HSI data can be exploited sufficiently. Besides, we propose a structure constraint to make the representation have a near block-diagonal structure. This helps to determine the final classification labels directly. Extensive experiments have been conducted on three popular HSI datasets. And the experimental results demonstrate that the proposed LSLRR outperforms other state-of-the-art methods.Comment: 14 pages, 7 figures, TGRS201

    Hyperspectral Image Clustering with Spatially-Regularized Ultrametrics

    Full text link
    We propose a method for the unsupervised clustering of hyperspectral images based on spatially regularized spectral clustering with ultrametric path distances. The proposed method efficiently combines data density and geometry to distinguish between material classes in the data, without the need for training labels. The proposed method is efficient, with quasilinear scaling in the number of data points, and enjoys robust theoretical performance guarantees. Extensive experiments on synthetic and real HSI data demonstrate its strong performance compared to benchmark and state-of-the-art methods. In particular, the proposed method achieves not only excellent labeling accuracy, but also efficiently estimates the number of clusters.Comment: 5 pages, 2 columns, 9 figure
    • …
    corecore