1,636 research outputs found

    Deep Learning for Image Spam Detection

    Get PDF
    Spam can be defined as unsolicited bulk email. In an effort to evade text-based spam filters, spammers can embed their spam text in an image, which is referred to as image spam. In this research, we consider the problem of image spam detection, based on image analysis. We apply various machine learning and deep learning techniques to real-world image spam datasets, and to a challenge image spam-like dataset. We obtain results comparable to previous work for the real-world datasets, while our deep learning approach yields the best results to date for the challenge dataset

    Ranking News-Quality Multimedia

    Full text link
    News editors need to find the photos that best illustrate a news piece and fulfill news-media quality standards, while being pressed to also find the most recent photos of live events. Recently, it became common to use social-media content in the context of news media for its unique value in terms of immediacy and quality. Consequently, the amount of images to be considered and filtered through is now too much to be handled by a person. To aid the news editor in this process, we propose a framework designed to deliver high-quality, news-press type photos to the user. The framework, composed of two parts, is based on a ranking algorithm tuned to rank professional media highly and a visual SPAM detection module designed to filter-out low-quality media. The core ranking algorithm is leveraged by aesthetic, social and deep-learning semantic features. Evaluation showed that the proposed framework is effective at finding high-quality photos (true-positive rate) achieving a retrieval MAP of 64.5% and a classification precision of 70%.Comment: To appear in ICMR'1

    $1.00 per RT #BostonMarathon #PrayForBoston: analyzing fake content on Twitter

    Get PDF
    This study found that 29% of the most viral content on Twitter during the Boston bombing crisis were rumors and fake content.AbstractOnline social media has emerged as one of the prominent channels for dissemination of information during real world events. Malicious content is posted online during events, which can result in damage, chaos and monetary losses in the real world. We analyzed one such media i.e. Twitter, for content generated during the event of Boston Marathon Blasts, that occurred on April, 15th, 2013. A lot of fake content and malicious profiles originated on Twitter network during this event. The aim of this work is to perform in-depth characterization of what factors influenced in malicious content and profiles becoming viral. Our results showed that 29% of the most viral content on Twitter, during the Boston crisis were rumors and fake content; while 51% was generic opinions and comments; and rest was true information. We found that large number of users with high social reputation and verified accounts were responsible for spreading the fake content. Next, we used regression prediction model, to verify that, overall impact of all users who propagate the fake content at a given time, can be used to estimate the growth of that content in future. Many malicious accounts were created on Twitter during the Boston event, that were later suspended by Twitter. We identified over six thousand such user profiles, we observed that the creation of such profiles surged considerably right after the blasts occurred. We identified closed community structure and star formation in the interaction network of these suspended profiles amongst themselves

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    SMS Spam Filtering: Methods and Data

    Get PDF
    Mobile or SMS spam is a real and growing problem primarily due to the availability of very cheap bulk pre-pay SMS packages and the fact that SMS engenders higher response rates as it is a trusted and personal service. SMS spam filtering is a relatively new task which inherits many issues and solu- tions from email spam filtering. However it poses its own specific challenges. This paper motivates work on filtering SMS spam and reviews recent devel- opments in SMS spam filtering. The paper also discusses the issues with data collection and availability for furthering research in this area, analyses a large corpus of SMS spam, and provides some initial benchmark results
    • 

    corecore