5,328 research outputs found

    Graph reconstruction numbers

    Get PDF
    Proposed in 1942, the Graph Reconstruction Conjecture posits that every simple, finite, undirected graph with three or more vertices can be reconstructed up to isomorphism to the original graph, given the multiset of subgraphs produced by deleting each vertex along with its incident edges. Related to this Reconstruction Conjecture, existential reconstruction numbers, 9rn(G), concern the minimum number of vertex-deleted subgraphs required to identify a graph up to isomorphism. We discuss the resulting data from calculating reconstruction numbers for all simple, undirected graphs with up to ten vertices. From this data, we establish the reasons behind all high existential reconstruction numbers (9rn(G) \u3e 3) for |V (G)| is less than or equal to 10 and identify new classes of graphs that have high reconstruction numbers for |V (G)| \u3e 10. We also consider 2-reconstructibility { the ability to reconstruct a graph G from the multiset of subgraphs produced by deleting each combination of two vertices from G. The 2-reconstructibility of all graphs with nine or less vertices was tested, identifying four graphs in this range with five vertices as the highest order of graphs that are not 2-reconstructible

    Graph reconstruction numbers

    Get PDF
    The Reconstruction Conjecture is one of the most important open problems in graph theory today. Proposed in 1942, the conjecture posits that every simple, finite, undirected graph with more than three vertices can be uniquely reconstructed up to isomorphism given the multiset of subgraphs produced by deleting each vertex of the original graph. Related to the Reconstruction Conjecture, reconstruction numbers concern the minimum number of vertex deleted subgraphs required to uniquely identify a graph up to isomorphism. During the summer of 2004, Jennifer Baldwin completed an MS project regarding reconstruction numbers. In it, she calculated reconstruction numbers for all graphs G where 2 \u3c |V(G)| \u3c 9. This project expands the computation of reconstruction numbers up to all graphs with ten vertices and a specific class of graphs with eleven vertices. Whereas Jennifer\u27s project focused on a statistical analysis of reconstruction number results, we instead focus on theorizing the causes of high reconstruction numbers. Accordingly, this project establishes the reasons behind all high existential reconstruction numbers identified within the set of all graphs G where 2 \u3c |V(G)| \u3c 11 and identifies new classes of graphs that have large reconstruction numbers. Finally, we consider 2-reconstructibility - the ability to reconstruct a graph G from the multiset of subgraphs produced by deleting each combination of 2 vertices from G. The 2-reconstructibility of all graphs with nine or less vertices was tested, identifying two graphs in this range with five vertices as the highest order graphs that are 2-nonreconstructible

    An algebraic formulation of the graph reconstruction conjecture

    Get PDF
    The graph reconstruction conjecture asserts that every finite simple graph on at least three vertices can be reconstructed up to isomorphism from its deck - the collection of its vertex-deleted subgraphs. Kocay's Lemma is an important tool in graph reconstruction. Roughly speaking, given the deck of a graph GG and any finite sequence of graphs, it gives a linear constraint that every reconstruction of GG must satisfy. Let ψ(n)\psi(n) be the number of distinct (mutually non-isomorphic) graphs on nn vertices, and let d(n)d(n) be the number of distinct decks that can be constructed from these graphs. Then the difference ψ(n)d(n)\psi(n) - d(n) measures how many graphs cannot be reconstructed from their decks. In particular, the graph reconstruction conjecture is true for nn-vertex graphs if and only if ψ(n)=d(n)\psi(n) = d(n). We give a framework based on Kocay's lemma to study this discrepancy. We prove that if MM is a matrix of covering numbers of graphs by sequences of graphs, then d(n)rankR(M)d(n) \geq \mathsf{rank}_\mathbb{R}(M). In particular, all nn-vertex graphs are reconstructible if one such matrix has rank ψ(n)\psi(n). To complement this result, we prove that it is possible to choose a family of sequences of graphs such that the corresponding matrix MM of covering numbers satisfies d(n)=rankR(M)d(n) = \mathsf{rank}_\mathbb{R}(M).Comment: 12 pages, 2 figure

    Reconstruction and Solvability

    Get PDF
    A graph is a mathematical object that consists of two sets: a set of vertices and a set of edges. An edge joins two vertices and depicts a relationship between those vertices. The following is a project for MTH 466 - Graph Theory and Combinatorics. The Reconstruction Conjecture states that any unknown graph that has at least five vertices can be reconstructed from knowing the “deck” of all its induced subgraphs that have one vertex removed. We will explore the validity of this conjecture. We will also consider ways of determining that a given deck of graphs is either an incorrect set or not the full set of induced subgraphs of a fixed graph and therefore unusable in reconstruction.https://ecommons.udayton.edu/stander_posters/3213/thumbnail.jp
    corecore