201 research outputs found

    Minimum Entropy Orientations

    Full text link
    We study graph orientations that minimize the entropy of the in-degree sequence. The problem of finding such an orientation is an interesting special case of the minimum entropy set cover problem previously studied by Halperin and Karp [Theoret. Comput. Sci., 2005] and by the current authors [Algorithmica, to appear]. We prove that the minimum entropy orientation problem is NP-hard even if the graph is planar, and that there exists a simple linear-time algorithm that returns an approximate solution with an additive error guarantee of 1 bit. This improves on the only previously known algorithm which has an additive error guarantee of log_2 e bits (approx. 1.4427 bits).Comment: Referees' comments incorporate

    Parallel Chip Firing Game associated with n-cube orientations

    Full text link
    We study the cycles generated by the chip firing game associated with n-cube orientations. We show the existence of the cycles generated by parallel evolutions of even lengths from 2 to 2n2^n on HnH_n (n >= 1), and of odd lengths different from 3 and ranging from 1 to 2n−1−12^{n-1}-1 on HnH_n (n >= 4)

    Fermions and Loops on Graphs. II. Monomer-Dimer Model as Series of Determinants

    Full text link
    We continue the discussion of the fermion models on graphs that started in the first paper of the series. Here we introduce a Graphical Gauge Model (GGM) and show that : (a) it can be stated as an average/sum of a determinant defined on the graph over Z2\mathbb{Z}_{2} (binary) gauge field; (b) it is equivalent to the Monomer-Dimer (MD) model on the graph; (c) the partition function of the model allows an explicit expression in terms of a series over disjoint directed cycles, where each term is a product of local contributions along the cycle and the determinant of a matrix defined on the remainder of the graph (excluding the cycle). We also establish a relation between the MD model on the graph and the determinant series, discussed in the first paper, however, considered using simple non-Belief-Propagation choice of the gauge. We conclude with a discussion of possible analytic and algorithmic consequences of these results, as well as related questions and challenges.Comment: 11 pages, 2 figures; misprints correcte
    • …
    corecore