3,599 research outputs found

    Hard limits on the postselectability of optical graph states

    Get PDF
    Coherent control of large entangled graph states enables a wide variety of quantum information processing tasks, including error-corrected quantum computation. The linear optical approach offers excellent control and coherence, but today most photon sources and entangling gates---required for the construction of large graph states---are probabilistic and rely on postselection. In this work, we provide proofs and heuristics to aid experimental design using postselection. We derive a fundamental limitation on the generation of photonic qubit states using postselected entangling gates: experiments which contain a cycle of postselected gates cannot be postselected. Further, we analyse experiments that use photons from postselected photon pair sources, and lower bound the number of classes of graph state entanglement that are accessible in the non-degenerate case---graph state entanglement classes that contain a tree are are always accessible. Numerical investigation up to 9-qubits shows that the proportion of graph states that are accessible using postselection diminishes rapidly. We provide tables showing which classes are accessible for a variety of up to nine qubit resource states and sources. We also use our methods to evaluate near-term multi-photon experiments, and provide our algorithms for doing so.Comment: Our manuscript comprises 4843 words, 6 figures, 1 table, 47 references, and a supplementary material of 1741 words, 2 figures, 1 table, and a Mathematica code listin

    Exactly Solvable Lattice Models with Crossing Symmetry

    Full text link
    We show how to compute the exact partition function for lattice statistical-mechanical models whose Boltzmann weights obey a special "crossing" symmetry. The crossing symmetry equates partition functions on different trivalent graphs, allowing a transformation to a graph where the partition function is easily computed. The simplest example is counting the number of nets without ends on the honeycomb lattice, including a weight per branching. Other examples include an Ising model on the Kagome' lattice with three-spin interactions, dimers on any graph of corner-sharing triangles, and non-crossing loops on the honeycomb lattice, where multiple loops on each edge are allowed. We give several methods for obtaining models with this crossing symmetry, one utilizing discrete groups and another anyon fusion rules. We also present results indicating that for models which deviate slightly from having crossing symmetry, a real-space decimation (renormalization-group-like) procedure restores the crossing symmetry

    Computation by measurements: a unifying picture

    Get PDF
    The ability to perform a universal set of quantum operations based solely on static resources and measurements presents us with a strikingly novel viewpoint for thinking about quantum computation and its powers. We consider the two major models for doing quantum computation by measurements that have hitherto appeared in the literature and show that they are conceptually closely related by demonstrating a systematic local mapping between them. This way we effectively unify the two models, showing that they make use of interchangeable primitives. With the tools developed for this mapping, we then construct more resource-effective methods for performing computation within both models and propose schemes for the construction of arbitrary graph states employing two-qubit measurements alone.Comment: 13 pages, 18 figures, REVTeX

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    Dimers and cluster integrable systems

    Get PDF
    We show that the dimer model on a bipartite graph on a torus gives rise to a quantum integrable system of special type - a cluster integrable system. The phase space of the classical system contains, as an open dense subset, the moduli space of line bundles with connections on the graph. The sum of Hamiltonians is essentially the partition function of the dimer model. Any graph on a torus gives rise to a bipartite graph on the torus. We show that the phase space of the latter has a Lagrangian subvariety. We identify it with the space parametrizing resistor networks on the original graph.We construct several discrete quantum integrable systems.Comment: This is an updated version, 75 pages, which will appear in Ann. Sci. EN
    • …
    corecore