67,168 research outputs found

    Normal 6-edge-colorings of some bridgeless cubic graphs

    Full text link
    In an edge-coloring of a cubic graph, an edge is poor or rich, if the set of colors assigned to the edge and the four edges adjacent it, has exactly five or exactly three distinct colors, respectively. An edge is normal in an edge-coloring if it is rich or poor in this coloring. A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors such that each edge of the graph is normal. We denote by χN(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. It is known that proving χN(G)5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover, Jaeger was able to show that it implies classical conjectures like Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors were able to show that any simple cubic graph admits a normal 77-edge-coloring, and this result is best possible. In the present paper, we show that any claw-free bridgeless cubic graph, permutation snark, tree-like snark admits a normal 66-edge-coloring. Finally, we show that any bridgeless cubic graph GG admits a 66-edge-coloring such that at least 79E\frac{7}{9}\cdot |E| edges of GG are normal.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with arXiv:1804.0944

    Vertex-Coloring 2-Edge-Weighting of Graphs

    Full text link
    A kk-{\it edge-weighting} ww of a graph GG is an assignment of an integer weight, w(e){1,,k}w(e)\in \{1,\dots, k\}, to each edge ee. An edge weighting naturally induces a vertex coloring cc by defining c(u)=uew(e)c(u)=\sum_{u\sim e} w(e) for every uV(G)u \in V(G). A kk-edge-weighting of a graph GG is \emph{vertex-coloring} if the induced coloring cc is proper, i.e., c(u)c(v)c(u) \neq c(v) for any edge uvE(G)uv \in E(G). Given a graph GG and a vertex coloring c0c_0, does there exist an edge-weighting such that the induced vertex coloring is c0c_0? We investigate this problem by considering edge-weightings defined on an abelian group. It was proved that every 3-colorable graph admits a vertex-coloring 33-edge-weighting \cite{KLT}. Does every 2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In particular, we show that 3-connected bipartite graphs admit vertex-coloring 2-edge-weighting

    Oriented coloring on recursively defined digraphs

    Full text link
    Coloring is one of the most famous problems in graph theory. The coloring problem on undirected graphs has been well studied, whereas there are very few results for coloring problems on directed graphs. An oriented k-coloring of an oriented graph G=(V,A) is a partition of the vertex set V into k independent sets such that all the arcs linking two of these subsets have the same direction. The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the chromatic number of an oriented graph is an NP-hard problem. This motivates to consider the problem on oriented co-graphs. After giving several characterizations for this graph class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented co-graph. We further prove how the oriented chromatic number can be computed for the disjoint union and order composition from the oriented chromatic number of the involved oriented co-graphs. It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a longest oriented path plus one. We also show that the graph isomorphism problem on oriented co-graphs can be solved in linear time.Comment: 14 page

    Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles

    Full text link
    A {\em total coloring} of a graph GG is an assignment of colors to the vertices and the edges of GG such that every pair of adjacent/incident elements receive distinct colors. The {\em total chromatic number} of a graph GG, denoted by \chiup''(G), is the minimum number of colors in a total coloring of GG. The well-known Total Coloring Conjecture (TCC) says that every graph with maximum degree Δ\Delta admits a total coloring with at most Δ+2\Delta + 2 colors. A graph is {\em 11-toroidal} if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 11-toroidal graphs, and prove that the TCC holds for the 11-toroidal graphs with maximum degree at least~1111 and some restrictions on the triangles. Consequently, if GG is a 11-toroidal graph with maximum degree Δ\Delta at least~1111 and without adjacent triangles, then GG admits a total coloring with at most Δ+2\Delta + 2 colors.Comment: 10 page

    Complexity of C_k-Coloring in Hereditary Classes of Graphs

    Get PDF
    For a graph F, a graph G is F-free if it does not contain an induced subgraph isomorphic to F. For two graphs G and H, an H-coloring of G is a mapping f:V(G) -> V(H) such that for every edge uv in E(G) it holds that f(u)f(v)in E(H). We are interested in the complexity of the problem H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we consider H-Coloring of F-free graphs, where F is a fixed graph and H is an odd cycle of length at least 5. This problem is closely related to the well known open problem of determining the complexity of 3-Coloring of P_t-free graphs. We show that for every odd k >= 5 the C_k-Coloring problem, even in the precoloring-extension variant, can be solved in polynomial time in P_9-free graphs. On the other hand, we prove that the extension version of C_k-Coloring is NP-complete for F-free graphs whenever some component of F is not a subgraph of a subdivided claw
    corecore