67,168 research outputs found
Normal 6-edge-colorings of some bridgeless cubic graphs
In an edge-coloring of a cubic graph, an edge is poor or rich, if the set of
colors assigned to the edge and the four edges adjacent it, has exactly five or
exactly three distinct colors, respectively. An edge is normal in an
edge-coloring if it is rich or poor in this coloring. A normal
-edge-coloring of a cubic graph is an edge-coloring with colors such
that each edge of the graph is normal. We denote by the smallest
, for which admits a normal -edge-coloring. Normal edge-colorings
were introduced by Jaeger in order to study his well-known Petersen Coloring
Conjecture. It is known that proving for every bridgeless
cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover,
Jaeger was able to show that it implies classical conjectures like Cycle Double
Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors
were able to show that any simple cubic graph admits a normal
-edge-coloring, and this result is best possible. In the present paper, we
show that any claw-free bridgeless cubic graph, permutation snark, tree-like
snark admits a normal -edge-coloring. Finally, we show that any bridgeless
cubic graph admits a -edge-coloring such that at least edges of are normal.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with
arXiv:1804.0944
Vertex-Coloring 2-Edge-Weighting of Graphs
A -{\it edge-weighting} of a graph is an assignment of an integer
weight, , to each edge . An edge weighting naturally
induces a vertex coloring by defining for every
. A -edge-weighting of a graph is \emph{vertex-coloring} if
the induced coloring is proper, i.e., for any edge .
Given a graph and a vertex coloring , does there exist an
edge-weighting such that the induced vertex coloring is ? We investigate
this problem by considering edge-weightings defined on an abelian group.
It was proved that every 3-colorable graph admits a vertex-coloring
-edge-weighting \cite{KLT}. Does every 2-colorable graph (i.e., bipartite
graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple
sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In
particular, we show that 3-connected bipartite graphs admit vertex-coloring
2-edge-weighting
Oriented coloring on recursively defined digraphs
Coloring is one of the most famous problems in graph theory. The coloring
problem on undirected graphs has been well studied, whereas there are very few
results for coloring problems on directed graphs. An oriented k-coloring of an
oriented graph G=(V,A) is a partition of the vertex set V into k independent
sets such that all the arcs linking two of these subsets have the same
direction. The oriented chromatic number of an oriented graph G is the smallest
k such that G allows an oriented k-coloring. Deciding whether an acyclic
digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the
chromatic number of an oriented graph is an NP-hard problem. This motivates to
consider the problem on oriented co-graphs. After giving several
characterizations for this graph class, we show a linear time algorithm which
computes an optimal oriented coloring for an oriented co-graph. We further
prove how the oriented chromatic number can be computed for the disjoint union
and order composition from the oriented chromatic number of the involved
oriented co-graphs. It turns out that within oriented co-graphs the oriented
chromatic number is equal to the length of a longest oriented path plus one. We
also show that the graph isomorphism problem on oriented co-graphs can be
solved in linear time.Comment: 14 page
Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles
A {\em total coloring} of a graph is an assignment of colors to the
vertices and the edges of such that every pair of adjacent/incident
elements receive distinct colors. The {\em total chromatic number} of a graph
, denoted by \chiup''(G), is the minimum number of colors in a total
coloring of . The well-known Total Coloring Conjecture (TCC) says that every
graph with maximum degree admits a total coloring with at most colors. A graph is {\em -toroidal} if it can be drawn in torus such
that every edge crosses at most one other edge. In this paper, we investigate
the total coloring of -toroidal graphs, and prove that the TCC holds for the
-toroidal graphs with maximum degree at least~ and some restrictions on
the triangles. Consequently, if is a -toroidal graph with maximum degree
at least~ and without adjacent triangles, then admits a total
coloring with at most colors.Comment: 10 page
Complexity of C_k-Coloring in Hereditary Classes of Graphs
For a graph F, a graph G is F-free if it does not contain an induced subgraph isomorphic to F. For two graphs G and H, an H-coloring of G is a mapping f:V(G) -> V(H) such that for every edge uv in E(G) it holds that f(u)f(v)in E(H). We are interested in the complexity of the problem H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we consider H-Coloring of F-free graphs, where F is a fixed graph and H is an odd cycle of length at least 5. This problem is closely related to the well known open problem of determining the complexity of 3-Coloring of P_t-free graphs.
We show that for every odd k >= 5 the C_k-Coloring problem, even in the precoloring-extension variant, can be solved in polynomial time in P_9-free graphs. On the other hand, we prove that the extension version of C_k-Coloring is NP-complete for F-free graphs whenever some component of F is not a subgraph of a subdivided claw
- …
