4 research outputs found

    Hybrid case‑base maintenance approach for modeling large scale case‑based reasoning systems

    Get PDF
    YesCase-based reasoning (CBR) is a nature inspired paradigm of machine learning capable to continuously learn from the past experience. Each newly solved problem and its corresponding solution is retained in its central knowledge repository called case-base. Withρ the regular use of the CBR system, the case-base cardinality keeps on growing. It results into performance bottleneck as the number of comparisons of each new problem with the existing problems also increases with the case-base growth. To address this performance bottleneck, different case-base maintenance (CBM) strategies are used so that the growth of the case-base is controlled without compromising on the utility of knowledge maintained in the case-base. This research work presents a hybrid case-base maintenance approach which equally utilizes the benefits of case addition as well as case deletion strategies to maintain the case-base in online and offline modes respectively. The proposed maintenance method has been evaluated using a simulated model of autonomic forest fire application and its performance has been compared with the existing approaches on a large case-base of the simulated case study.Authors acknowledge the internal funding support received from Namal College Mianwali to complete the research work

    Providing contexts for classification of transients in a wide-area sky survey: An application of noise-induced cluster ensemble

    Get PDF
    With new sensor systems that capture sky survey at high quality level, analyzing the resulting data within a limited time frame appears to be the next challenge. Specific to the GOTO project, this task proves to be crucial to discover new transients from a pool of large candidates. Initial works based on the feature-based approach design this detection as imbalance classification, where a data-level method can be used to resolve the difference in cardinality between classes. This paper presents a context generation framework to complement the previously proposed model. In particular, samples are clustered to form data contexts to which different learning strategies may be applied. To ensure the quality of data clustering, a noise-induced cluster ensemble technique that has been recently introduced in the literature is employed here. The results with simulated data and algorithms of NB, C4.5 and KNN have shown that the proposed framework can filter out some negative samples quickly, while making classification of the rest more effective. In particular, it enhances predictive performance of basic classifiers by lifting F1 scores from less than 0.1 to around 0.3–0.5. Besides, parameter analysis is also given as a guideline for its application

    Enabling Ubiquitous OLAP Analyses

    Get PDF
    An OLAP analysis session is carried out as a sequence of OLAP operations applied to multidimensional cubes. At each step of a session, an operation is applied to the result of the previous step in an incremental fashion. Due to its simplicity and flexibility, OLAP is the most adopted paradigm used to explore the data stored in data warehouses. With the goal of expanding the fruition of OLAP analyses, in this thesis we touch several critical topics. We first present our contributions to deal with data extractions from service-oriented sources, which are nowadays used to provide access to many databases and analytic platforms. By addressing data extraction from these sources we make a step towards the integration of external databases into the data warehouse, thus providing richer data that can be analyzed through OLAP sessions. The second topic that we study is that of visualization of multidimensional data, which we exploit to enable OLAP on devices with limited screen and bandwidth capabilities (i.e., mobile devices). Finally, we propose solutions to obtain multidimensional schemata from unconventional sources (e.g., sensor networks), which are crucial to perform multidimensional analyses

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore