250,812 research outputs found

    Neural Graph Collaborative Filtering

    Full text link
    Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions -- more specifically the bipartite graph structure -- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.Comment: SIGIR 2019; the latest version of NGCF paper, which is distinct from the version published in ACM Digital Librar

    KGAT: Knowledge Graph Attention Network for Recommendation

    Full text link
    To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.Comment: KDD 2019 research trac

    Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    Full text link
    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.Comment: SDM 201

    Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach

    Full text link
    Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models by iteratively stacking multiple layers of convolution aggregation operations and non-linear activation operations. Recently, in Collaborative Filtering (CF) based Recommender Systems (RS), by treating the user-item interaction behavior as a bipartite graph, some researchers model higher-layer collaborative signals with GCNs. These GCN based recommender models show superior performance compared to traditional works. However, these models suffer from training difficulty with non-linear activations for large user-item graphs. Besides, most GCN based models could not model deeper layers due to the over smoothing effect with the graph convolution operation. In this paper, we revisit GCN based CF models from two aspects. First, we empirically show that removing non-linearities would enhance recommendation performance, which is consistent with the theories in simple graph convolutional networks. Second, we propose a residual network structure that is specifically designed for CF with user-item interaction modeling, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse user-item interaction data. The proposed model is a linear model and it is easy to train, scale to large datasets, and yield better efficiency and effectiveness on two real datasets. We publish the source code at https://github.com/newlei/LRGCCF.Comment: The updated version is publised in AAAI 202

    Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation

    Full text link
    Session-based recommendation (SBR) focuses on next-item prediction at a certain time point. As user profiles are generally not available in this scenario, capturing the user intent lying in the item transitions plays a pivotal role. Recent graph neural networks (GNNs) based SBR methods regard the item transitions as pairwise relations, which neglect the complex high-order information among items. Hypergraph provides a natural way to capture beyond-pairwise relations, while its potential for SBR has remained unexplored. In this paper, we fill this gap by modeling session-based data as a hypergraph and then propose a hypergraph convolutional network to improve SBR. Moreover, to enhance hypergraph modeling, we devise another graph convolutional network which is based on the line graph of the hypergraph and then integrate self-supervised learning into the training of the networks by maximizing mutual information between the session representations learned via the two networks, serving as an auxiliary task to improve the recommendation task. Since the two types of networks both are based on hypergraph, which can be seen as two channels for hypergraph modeling, we name our model \textbf{DHCN} (Dual Channel Hypergraph Convolutional Networks). Extensive experiments on three benchmark datasets demonstrate the superiority of our model over the SOTA methods, and the results validate the effectiveness of hypergraph modeling and self-supervised task. The implementation of our model is available at https://github.com/xiaxin1998/DHCNComment: 9 pages, 4 figures, accepted by AAAI'2
    corecore