2,405 research outputs found

    A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions

    Full text link
    Graphs represent interconnected structures prevalent in a myriad of real-world scenarios. Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data, underpinning various tasks including node classification and link prediction. However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce, thereby leading to biased learning outcomes. This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes. In this survey, we embark on a comprehensive review of the literature on imbalanced learning on graphs. We begin by providing a definitive understanding of the concept and related terminologies, establishing a strong foundational understanding for readers. Following this, we propose two comprehensive taxonomies: (1) the problem taxonomy, which describes the forms of imbalance we consider, the associated tasks, and potential solutions; (2) the technique taxonomy, which details key strategies for addressing these imbalances, and aids readers in their method selection process. Finally, we suggest prospective future directions for both problems and techniques within the sphere of imbalanced learning on graphs, fostering further innovation in this critical area.Comment: The collection of awesome literature on imbalanced learning on graphs: https://github.com/Xtra-Computing/Awesome-Literature-ILoG

    Few-Shot Semantic Relation Prediction across Heterogeneous Graphs

    Full text link
    Semantic relation prediction aims to mine the implicit relationships between objects in heterogeneous graphs, which consist of different types of objects and different types of links. In real-world scenarios, new semantic relations constantly emerge and they typically appear with only a few labeled data. Since a variety of semantic relations exist in multiple heterogeneous graphs, the transferable knowledge can be mined from some existing semantic relations to help predict the new semantic relations with few labeled data. This inspires a novel problem of few-shot semantic relation prediction across heterogeneous graphs. However, the existing methods cannot solve this problem because they not only require a large number of labeled samples as input, but also focus on a single graph with a fixed heterogeneity. Targeting this novel and challenging problem, in this paper, we propose a Meta-learning based Graph neural network for Semantic relation prediction, named MetaGS. Firstly, MetaGS decomposes the graph structure between objects into multiple normalized subgraphs, then adopts a two-view graph neural network to capture local heterogeneous information and global structure information of these subgraphs. Secondly, MetaGS aggregates the information of these subgraphs with a hyper-prototypical network, which can learn from existing semantic relations and adapt to new semantic relations. Thirdly, using the well-initialized two-view graph neural network and hyper-prototypical network, MetaGS can effectively learn new semantic relations from different graphs while overcoming the limitation of few labeled data. Extensive experiments on three real-world datasets have demonstrated the superior performance of MetaGS over the state-of-the-art methods

    Fast Adaptation of Neural Networks

    Get PDF
    The ability to learn quickly from a few samples is a vital element of intelligence. Humans can reuse past knowledge and learn incredibly quickly. Also humans are able to interact with others to effectively guide their learning process. Computer vision systems for recognizing objects automatically from pixels are becoming commonplace in production systems. These modern computer vision systems use deep neural networks to automatically learn and recognize objects from data. Oftentimes, these deep neural networks used in production require a lot of data, take a long time to learn and forget old things when learning something new. We build upon previous methods called Prototypical Networks and Model-Agnostic Meta-Learning (MAML) that enables machines to learn to recognize new objects with very little supervision from the user. We extend these methods to the semi-supervised few-shot learning scenario, where the few labeled samples are accompanied with (potentially many) unlabeled samples. Our proposed methods are able to learn better by also making use of the additional unlabeled samples. We note that in many real-world applications the adaptation performance can be significantly improved by requesting the few labels through user feedback (active adaptation). Further, our proposed methods can also adapt to new tasks without any labeled examples (unsupervised adaptation) when the new task has the same output space as the training tasks do
    • …
    corecore